Abstract

We report on the development of fluorescence Gabor domain optical coherence microscopy (Fluo GD-OCM), a combination of GD-OCM with laser scanning confocal fluorescence microscopy (LSCFM) for synchronous micro-structural and fluorescence imaging. The dynamic focusing capability of GD-OCM provided the adaptive illumination environment for both modalities without any mechanical movement. Using Fluo GD-OCM, we imaged ex vivo DsRed-expressing cells in the brain of a transgenic mouse, as well as Cy3-labeled ganglion cells and Cy3-labeled astrocytes from a mouse retina. The self-registration of images taken by the two different imaging modalities showed the potential for a correlative study of subjects and double identification of the target.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Dual-modality fluorescence and full-field optical coherence microscopy for biomedical imaging applications

Egidijus Auksorius, Yaron Bromberg, Rūta Motiejūnaitė, Alberto Pieretti, Linbo Liu, Emmanuel Coron, Jorge Aranda, Allan M. Goldstein, Brett E. Bouma, Andrius Kazlauskas, and Guillermo J. Tearney
Biomed. Opt. Express 3(3) 661-666 (2012)

Combined scanning optical coherence and two-photon-excited fluorescence microscopy

E. Beaurepaire, L. Moreaux, F. Amblard, and J. Mertz
Opt. Lett. 24(14) 969-971 (1999)

Dual modality fluorescence confocal and spectral-domain optical coherence tomography microendoscope

Houssine Makhlouf, Andrew R. Rouse, and Arthur F. Gmitro
Biomed. Opt. Express 2(3) 634-644 (2011)

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref]
  2. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
    [Crossref]
  3. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
    [Crossref]
  4. M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).
    [Crossref]
  5. B. E. Bouma, S. H. Yun, B. J. Vakoc, M. J. Suter, and G. J. Tearney, “Fourier-domain optical coherence tomography: recent advances toward clinical utility,” Curr. Opin. Biotechnol. 20(1), 111–118 (2009).
    [Crossref]
  6. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22(5), 340–342 (1997).
    [Crossref]
  7. B. Golubovic, B. E. Bouma, G. J. Tearney, and J. G. Fujimoto, “Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr/sup 4+/:forsterite laser,” Opt. Lett. 22(22), 1704–1706 (1997).
    [Crossref]
  8. U. Morgner, W. Drexler, F. X. Kärtner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett. 25(2), 111–113 (2000).
    [Crossref]
  9. C. Xu, C. Vinegoni, T. S. Ralston, W. Luo, W. Tan, and S. A. Boppart, “Spectroscopic spectral-domain optical coherence microscopy,” Opt. Lett. 31(8), 1079–1081 (2006).
    [Crossref]
  10. F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics 5(12), 744–747 (2011).
    [Crossref]
  11. R. V. Kuranov, V. V. Sapozhnikova, N. M. Shakhova, V. M. Gelikonov, E. V. Zagainova, and S. A. Petrova, “Combined application of optical methods to increase the information content of optical coherent tomography in diagnostics of neoplastic processes,” Quantum Electron. 32(11), 993–998 (2002).
    [Crossref]
  12. R. J. McNichols, A. Gowda, B. A. Bell, R. M. Johnigan, K. H. Calhoun, and M. Motamedi, “Development of an endoscopic fluorescence image-guided OCT probe for oral cancer detection,” Proc. SPIE 4254, 23–30 (2001).
    [Crossref]
  13. Y. T. Pan, T. Q. Xie, C. W. Du, S. Bastacky, S. Meyers, and M. L. Zeidel, “Enhancing early bladder cancer detection with fluorescence-guided endoscopic optical coherent tomography,” Opt. Lett. 28(24), 2485–2487 (2003).
    [Crossref]
  14. A. R. Tumlinson, L. P. Hariri, U. Utzinger, and J. K. Barton, “Miniature endoscope for simultaneous optical coherence tomography and laser-induced fluorescence measurement,” Appl. Opt. 43(1), 113–121 (2004).
    [Crossref]
  15. R. A. Wall, G. T. Bonnema, and J. K. Barton, “Novel focused OCT-LIF endoscope,” Biomed. Opt. Express 2(3), 421–430 (2011).
    [Crossref]
  16. Z. G. Wang, D. B. Durand, M. Schoenberg, and Y. T. Pan, “Fluorescence guided optical coherence tomography for the diagnosis of early bladder cancer in a rat model,” J. Urol. 174(6), 2376–2381 (2005).
    [Crossref]
  17. J. B. McNally, N. D. Kirkpatrick, L. P. Hariri, A. R. Tumlinson, D. G. Besselsen, E. W. Gerner, U. Utzinger, and J. K. Barton, “Task-based imaging of colon cancer in the Apc(Min/+) mouse model,” Appl. Opt. 45(13), 3049–3062 (2006).
    [Crossref]
  18. S. Liang, A. Saidi, J. Jing, G. Liu, J. Li, J. Zhang, C. Sun, J. Narula, and Z. Chen, “Intravascular atherosclerotic imaging with combined fluorescence and optical coherence tomography probe based on a double-clad fiber combiner,” J. Biomed. Opt. 17(7), 0705011 (2012).
    [Crossref]
  19. J. Mavadia, J. Xi, Y. Chen, and X. Li, “An all-fiber-optic endoscopy platform for simultaneous OCT and fluorescence imaging,” Biomed. Opt. Express 3(11), 2851–2859 (2012).
    [Crossref]
  20. D. Lorenser, B. C. Quirk, M. Auger, W. J. Madore, R. W. Kirk, N. Godbout, D. D. Sampson, C. Boudoux, and R. A. McLaughlin, “Dual-modality needle probe for combined fluorescence imaging and three-dimensional optical coherence tomography,” Opt. Lett. 38(3), 266–268 (2013).
    [Crossref]
  21. J. Xi, Y. Chen, Y. Zhang, K. Murari, M. J. Li, and X. Li, “Integrated multimodal endomicroscopy platform for simultaneous en face optical coherence and two-photon fluorescence imaging,” Opt. Lett. 37(3), 362–364 (2012).
    [Crossref]
  22. B. E. Sherlock, J. E. Phipps, J. Bec, and L. Marcu, “Simultaneous, label-free, multispectral fluorescence lifetime imaging and optical coherence tomography using a double-clad fiber,” Opt. Lett. 42(19), 3753–3756 (2017).
    [Crossref]
  23. J. K. Barton, F. Guzman, and A. R. Tumlinson, “Dual modality instrument for simultaneous optical coherence tomography imaging and fluorescence spectroscopy,” J. Biomed. Opt. 9(3), 618–624 (2004).
    [Crossref]
  24. S. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Xu, G. Griffiths, J. Jiang, H. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Phys. Med. Biol. 55(1), 191–206 (2010).
    [Crossref]
  25. E. Beaurepaire, L. Moreaux, F. Amblard, and J. Mertz, “Combined scanning optical coherence and two-photon-excited fluorescence microscopy,” Opt. Lett. 24(14), 969–971 (1999).
    [Crossref]
  26. C. Vinegoni, T. Ralston, W. Tan, W. Luo, D. L. Marks, and S. A. Boppart, “Integrated structural and functional optical imaging combining spectral-domain optical coherence and multiphoton microscopy,” Appl. Phys. Lett. 88(5), 053901 (2006).
    [Crossref]
  27. B. Jeong, B. Lee, M. Jang, H. Nam, S. Yoon, T. Wang, J. Doh, B. Yang, M. Jang, and K. Kim, “Combined two-photon microscopy and optical coherence tomography using individually optimized sources,” Opt. Express 19(14), 13089–13096 (2011).
    [Crossref]
  28. E. Auksorius, Y. Bromberg, R. Motiejūnaitė, A. Pieretti, L. Liu, E. Coron, J. Aranda, A. M. Goldstein, B. E. Bouma, A. Kazlauskas, and G. J. Tearney, “Dual-modality fluorescence and full-field optical coherence microcopy for biomedical imaging applications,” Biomed. Opt. Express 3(3), 661–666 (2012).
    [Crossref]
  29. O. Thouvenin, M. Fink, and C. Boccara, “Dynamic multimodal full-field optical coherence tomography and fluorescence structured illumination microscopy,” J. Biomed. Opt. 22(2), 026004 (2017).
    [Crossref]
  30. J. Park, J. A. Jo, S. Shrestha, P. Pande, Q. Wan, and B. E. Applegate, “A dual-modality optical coherence tomography and fluorescence lifetime imaging microscopy system for simultaneous morphological and biochemical tissue characterization,” Biomed. Opt. Express 1(1), 186–200 (2010).
    [Crossref]
  31. M. Gärtner, P. Cimalla, S. Meissner, E. Koch, and W. M. Kübler, “Three-dimensional simultaneous optical coherence tomography and confocal fluorescence microscopy for investigation of lung tissue,” J. Biomed. Opt. 17(7), 071310 (2012).
    [Crossref]
  32. P. Zhang, A. Zam, Y. Jian, X. Wang, Y. Li, K. S. Lam, M. E. Burns, M. V. Sarunic, E. N. Jr, P. Jr, and R. J. Zawadzki, “In vivo wide-field multispectral scanning laser ophthalmoscopy-optical coherence tomography mouse retinal imager: longitudinal imaging of ganglion cells, microglia, and Müller glia, and mapping of the mouse retinal and choroidal vasculature,” J. Biomed. Opt. 20(12), 126005 (2015).
    [Crossref]
  33. M. A. Yaseen, V. J. Srinivasan, S. Sakadžić, H. Radhakrishnan, I. Gorczynska, W. Wu, J. G. Fujimoto, and D. A. Boas, “Microvascular oxygen tension and flow measurements in rodent cerebral cortex during baseline conditions and functional activation,” J. Cereb. Blood Flow Metab. 31(4), 1051–1063 (2011).
    [Crossref]
  34. Z. Nafar, M. Jiang, R. Wen, and S. Jiao, “Visible-light optical coherence tomography-based multimodal retinal imaging for improvement of fluorescent intensity quantification,” Biomed. Opt. Express 7(9), 3220–3229 (2016).
    [Crossref]
  35. A. Lichtenegger, J. Gesperger, B. Kiesel, M. Muck, P. Eugui, D. J. Harper, M. Salas, M. Augustin, C. W. Merkle, C. K. Hitzenberger, G. Widhalm, A. Wöhrer, and B. Baumann, “Revealing brain pathologies with multimodal visible light optical coherence microscopy and fluorescence imaging,” J. Biomed. Opt. 24(06), 1 (2019).
    [Crossref]
  36. J. P. Rolland, P. Meemon, S. Murali, K. P. Thompson, and K. Lee, “Gabor-based fusion technique for optical coherence microscopy,” Opt. Express 18(4), 3632–3642 (2010).
    [Crossref]
  37. S. Murali, K. P. Thompson, and J. P. Rolland, “Three-dimensional adaptive microscopy using embedded liquid lens,” Opt. Lett. 34(2), 145–147 (2009).
    [Crossref]
  38. S. Murali, P. Meemon, K. Lee, W. P. Kuhn, K. P. Thompson, and J. P. Rolland, “Assessment of a liquid lens enabled in vivo optical coherence microscope,” Appl. Opt. 49(16), D145–D156 (2010).
    [Crossref]
  39. G. J. Tearney, B. E. Bouma, and J. G. Fujimoto, “High-speed phase- and group-delay scanning with a grating-based phase control delay line,” Opt. Lett. 22(23), 1811–1813 (1997).
    [Crossref]
  40. A. V. Zvyagin, E. D. J. Smith, and D. D. Sampson, “Delay and dispersion characteristics of a frequency-domain optical delay line for scanning interferometry,” J. Opt. Soc. Am. A 20(2), 333–341 (2003).
    [Crossref]
  41. K. Lee, A. C. Akcay, T. Delemos, E. Clarkson, and J. P. Rolland, “Dispersion control with a Fourier-domain optical delay line in a fiber-optic imaging interferometer,” Appl. Opt. 44(19), 4009–4022 (2005).
    [Crossref]
  42. K. Lee, K. P. Thompson, and J. P. Rolland, “Broadband astigmatism-corrected Czerny-Turner spectrometer,” Opt. Express 18(22), 23378–23384 (2010).
    [Crossref]
  43. N. C. Shaner, R. E. Campbell, P. A. Steinbach, B. N. G. Giepmans, A. E. Palmer, and R. Y. Tsien, “Improved monomeric red, orange, and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein,” Nat. Biotechnol. 22(12), 1567–1572 (2004).
    [Crossref]
  44. A. Wax and K. Sokolov, “Molecular imaging and darkfield microspectroscopy of live cells using gold plasmonic nanoparticles,” Laser Photonics Rev. 3(1-2), 146–158 (2009).
    [Crossref]
  45. M. Villiger, C. Pache, and T. Lasser, “Dark-field optical coherence microscopy,” Opt. Lett. 35(20), 3489–3491 (2010).
    [Crossref]
  46. C. Blatter, B. Grajciar, C. M. Eigenwilling, W. Wieser, B. R. Biedermann, R. Huber, and R. A. Leitgeb, “Extended focus high-speed swept source OCT with self-reconstructive illumination,” Opt. Express 19(13), 12141–12155 (2011).
    [Crossref]
  47. K. Mehta, P. Zhang, E. L. L. Yeo, J. C. Y. Kah, and N. Chen, “Dark-field circular depolarization optical coherence microscopy,” Biomed. Opt. Express 4(9), 1683–1691 (2013).
    [Crossref]
  48. Y. Yoon, Q. Li, V. H. Le, W. Jang, T. Wang, B. Kim, S. Son, W. Chung, C. Joo, and K. Kim, “Dark-field polarization-sensitive optical coherence tomography,” Opt. Express 23(10), 12874–12886 (2015).
    [Crossref]
  49. P. J. Marchand, A. Bouwens, D. Szlag, D. Nguyen, A. Descloux, M. Sison, S. Coquoz, J. Extermann, and T. Lasser, “Visible spectrum extended-focus optical coherence microscopy for label-free sub-cellular tomography,” Biomed. Opt. Express 8(7), 3343–3359 (2017).
    [Crossref]
  50. B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E: Soft Matter Biol. Phys. 3(2), 159–163 (2000).
    [Crossref]
  51. D. A. Hartmann, R. G. Underly, A. N. Watson, and A. Y. Shih, “A murine toolbox for imaging the neurovascular unit,” Microcirculation 22(3), 168–182 (2015).
    [Crossref]
  52. M. Vanlandewijck, L. He, M. A. Mäe, J. Andrae, K. Ando, F. D. Gaudio, K. Nahar, T. Lebouvier, B. Laviña, L. Gouveia, Y. Sun, E. Raschperger, M. Räsänen, Y. Zarb, N. Mochizuki, A. Keller, U. Lendahl, and C. Betsholtz, “A molecular atlas of cell types and zonation in the brain vasculature,” Nature 554(7693), 475–480 (2018).
    [Crossref]
  53. J. Ben Arous, J. Binding, J. F. Leger, M. Casado, P. Topilko, L. Bourdieu, S. Gigan, and A. C. Boccara, “Single myelin fiber imaging in living rodents without labeling by deep optical coherence microscopy,” J. Biomed. Opt. 16(11), 116012 (2011).
    [Crossref]
  54. V. J. Srinivasan, H. Radhakrishnan, J. Y. Jiang, S. Barry, and A. E. Cable, “Optical coherence microscopy for deep tissue imaging of the cerebral cortex with intrinsic contrast,” Opt. Express 20(3), 2220–2239 (2012).
    [Crossref]
  55. C. Leahy, H. Radhakrishnan, and V. J. Srinivasan, “Volumetric imaging and quantification of cytoarchitecture and myeloarchitecture with intrinsic scattering contrast,” Biomed. Opt. Express 4(10), 1978–1990 (2013).
    [Crossref]
  56. H. Wang, T. Akkin, C. Magnain, R. Wang, J. Dubb, W. J. Kostis, M. A. Yaseen, A. Cramer, S. Sakadžić, and D. Boas, “Polarization sensitive optical coherence microscopy for brain imaging,” Opt. Lett. 41(10), 2213–2216 (2016).
    [Crossref]
  57. D. Attwell, A. Mishra, C. N. Hall, F. M. O’Farrell, and T. Dalkara, “What is a pericyte?” J. Cereb. Blood Flow Metab. 36(2), 451–455 (2016).
    [Crossref]
  58. Q. Cui, H. K. Yip, R. C. Zhao, K. F. So, and A. R. Harvey, “Intraocular elevation of cyclic AMP potentiates ciliary neurotrophic factor-induced regeneration of adult rat retinal ganglion cell axons,” Mol. Cell. Neurosci. 22(1), 49–61 (2003).
    [Crossref]
  59. J. M. Kwong, J. Caprioli, and N. Piri, “RNA binding protein with multiple splicing: a new marker for retinal ganglion cells,” Invest. Ophthalmol. Visual Sci. 51(2), 1052–1058 (2010).
    [Crossref]
  60. L. Ginner, A. Kumar, D. Fechtig, L. M. Wurster, M. Salas, M. Pircher, and R. A. Leitgeb, “Noniterative digital aberration correction for cellular resolution retinal optical coherence tomography in vivo,” Optica 4(8), 924–931 (2017).
    [Crossref]
  61. X. Yao, T. Son, T. Kim, and Y. Lu, “Functional optical coherence tomography of retinal photoreceptors,” Exp. Biol. Med. 243(17-18), 1256–1264 (2018).
    [Crossref]
  62. Y. Fu and K. Yau, “Phototransduction in mouse rods and cones,” Pfluegers Arch. 454(5), 805–819 (2007).
    [Crossref]
  63. S. Kuchler-Bopp, J. P. Delaunoy, J. C. Artault, M. Zaepfel, and J. B. Dietrich, “Astrocytes induce several bold-brain barrier properties in non-neural endothelial cells,” NeuroReport 10(6), 1347–1353 (1999).
    [Crossref]
  64. K. R. Huxlin, A. J. Sefton, and J. H. Furby, “The origin and development of retinal astrocytes in the mouse,” J. Neurocytol. 21(7), 530–544 (1992).
    [Crossref]
  65. L. Duan, S. J. Pan, T. N. Sato, and G. Fong, “Retinal angiogenesis regulates astrocytic differentiation in neonatal mouse retinas by oxygen dependent mechanisms,” Sci. Rep. 7(1), 17608 (2017).
    [Crossref]
  66. A. Cogliati, C. Canavesi, A. Hayes, P. Tankam, V. F. Duma, A. Santhanam, K. P. Thompson, and J. P. Rolland, “MEMS-based handheld scanning probe with pre-shaped input signals for distortion-free images in Gabor-domain optical coherence microscopy,” Opt. Express 24(12), 13365–13374 (2016).
    [Crossref]
  67. W. Drexler and J. G. Fujimoto, Optical Coherence Tomography-Technology and Applications-2nd Ed. (Springer International Publishing, Switzerland, 2015).
    [Crossref]
  68. J. F. de Boer, R. Leitgeb, and M. Wojtkowski, “Twenty-five years of optical coherence tomography: the paradigm shift in sensitivity and speed provided by Fourier domain OCT [Invited],” Biomed. Opt. Express 8(7), 3248–3280 (2017).
    [Crossref]

2019 (1)

A. Lichtenegger, J. Gesperger, B. Kiesel, M. Muck, P. Eugui, D. J. Harper, M. Salas, M. Augustin, C. W. Merkle, C. K. Hitzenberger, G. Widhalm, A. Wöhrer, and B. Baumann, “Revealing brain pathologies with multimodal visible light optical coherence microscopy and fluorescence imaging,” J. Biomed. Opt. 24(06), 1 (2019).
[Crossref]

2018 (2)

M. Vanlandewijck, L. He, M. A. Mäe, J. Andrae, K. Ando, F. D. Gaudio, K. Nahar, T. Lebouvier, B. Laviña, L. Gouveia, Y. Sun, E. Raschperger, M. Räsänen, Y. Zarb, N. Mochizuki, A. Keller, U. Lendahl, and C. Betsholtz, “A molecular atlas of cell types and zonation in the brain vasculature,” Nature 554(7693), 475–480 (2018).
[Crossref]

X. Yao, T. Son, T. Kim, and Y. Lu, “Functional optical coherence tomography of retinal photoreceptors,” Exp. Biol. Med. 243(17-18), 1256–1264 (2018).
[Crossref]

2017 (6)

2016 (4)

2015 (3)

D. A. Hartmann, R. G. Underly, A. N. Watson, and A. Y. Shih, “A murine toolbox for imaging the neurovascular unit,” Microcirculation 22(3), 168–182 (2015).
[Crossref]

P. Zhang, A. Zam, Y. Jian, X. Wang, Y. Li, K. S. Lam, M. E. Burns, M. V. Sarunic, E. N. Jr, P. Jr, and R. J. Zawadzki, “In vivo wide-field multispectral scanning laser ophthalmoscopy-optical coherence tomography mouse retinal imager: longitudinal imaging of ganglion cells, microglia, and Müller glia, and mapping of the mouse retinal and choroidal vasculature,” J. Biomed. Opt. 20(12), 126005 (2015).
[Crossref]

Y. Yoon, Q. Li, V. H. Le, W. Jang, T. Wang, B. Kim, S. Son, W. Chung, C. Joo, and K. Kim, “Dark-field polarization-sensitive optical coherence tomography,” Opt. Express 23(10), 12874–12886 (2015).
[Crossref]

2013 (3)

2012 (6)

V. J. Srinivasan, H. Radhakrishnan, J. Y. Jiang, S. Barry, and A. E. Cable, “Optical coherence microscopy for deep tissue imaging of the cerebral cortex with intrinsic contrast,” Opt. Express 20(3), 2220–2239 (2012).
[Crossref]

J. Xi, Y. Chen, Y. Zhang, K. Murari, M. J. Li, and X. Li, “Integrated multimodal endomicroscopy platform for simultaneous en face optical coherence and two-photon fluorescence imaging,” Opt. Lett. 37(3), 362–364 (2012).
[Crossref]

E. Auksorius, Y. Bromberg, R. Motiejūnaitė, A. Pieretti, L. Liu, E. Coron, J. Aranda, A. M. Goldstein, B. E. Bouma, A. Kazlauskas, and G. J. Tearney, “Dual-modality fluorescence and full-field optical coherence microcopy for biomedical imaging applications,” Biomed. Opt. Express 3(3), 661–666 (2012).
[Crossref]

J. Mavadia, J. Xi, Y. Chen, and X. Li, “An all-fiber-optic endoscopy platform for simultaneous OCT and fluorescence imaging,” Biomed. Opt. Express 3(11), 2851–2859 (2012).
[Crossref]

M. Gärtner, P. Cimalla, S. Meissner, E. Koch, and W. M. Kübler, “Three-dimensional simultaneous optical coherence tomography and confocal fluorescence microscopy for investigation of lung tissue,” J. Biomed. Opt. 17(7), 071310 (2012).
[Crossref]

S. Liang, A. Saidi, J. Jing, G. Liu, J. Li, J. Zhang, C. Sun, J. Narula, and Z. Chen, “Intravascular atherosclerotic imaging with combined fluorescence and optical coherence tomography probe based on a double-clad fiber combiner,” J. Biomed. Opt. 17(7), 0705011 (2012).
[Crossref]

2011 (6)

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics 5(12), 744–747 (2011).
[Crossref]

M. A. Yaseen, V. J. Srinivasan, S. Sakadžić, H. Radhakrishnan, I. Gorczynska, W. Wu, J. G. Fujimoto, and D. A. Boas, “Microvascular oxygen tension and flow measurements in rodent cerebral cortex during baseline conditions and functional activation,” J. Cereb. Blood Flow Metab. 31(4), 1051–1063 (2011).
[Crossref]

J. Ben Arous, J. Binding, J. F. Leger, M. Casado, P. Topilko, L. Bourdieu, S. Gigan, and A. C. Boccara, “Single myelin fiber imaging in living rodents without labeling by deep optical coherence microscopy,” J. Biomed. Opt. 16(11), 116012 (2011).
[Crossref]

R. A. Wall, G. T. Bonnema, and J. K. Barton, “Novel focused OCT-LIF endoscope,” Biomed. Opt. Express 2(3), 421–430 (2011).
[Crossref]

C. Blatter, B. Grajciar, C. M. Eigenwilling, W. Wieser, B. R. Biedermann, R. Huber, and R. A. Leitgeb, “Extended focus high-speed swept source OCT with self-reconstructive illumination,” Opt. Express 19(13), 12141–12155 (2011).
[Crossref]

B. Jeong, B. Lee, M. Jang, H. Nam, S. Yoon, T. Wang, J. Doh, B. Yang, M. Jang, and K. Kim, “Combined two-photon microscopy and optical coherence tomography using individually optimized sources,” Opt. Express 19(14), 13089–13096 (2011).
[Crossref]

2010 (7)

J. P. Rolland, P. Meemon, S. Murali, K. P. Thompson, and K. Lee, “Gabor-based fusion technique for optical coherence microscopy,” Opt. Express 18(4), 3632–3642 (2010).
[Crossref]

S. Murali, P. Meemon, K. Lee, W. P. Kuhn, K. P. Thompson, and J. P. Rolland, “Assessment of a liquid lens enabled in vivo optical coherence microscope,” Appl. Opt. 49(16), D145–D156 (2010).
[Crossref]

J. Park, J. A. Jo, S. Shrestha, P. Pande, Q. Wan, and B. E. Applegate, “A dual-modality optical coherence tomography and fluorescence lifetime imaging microscopy system for simultaneous morphological and biochemical tissue characterization,” Biomed. Opt. Express 1(1), 186–200 (2010).
[Crossref]

M. Villiger, C. Pache, and T. Lasser, “Dark-field optical coherence microscopy,” Opt. Lett. 35(20), 3489–3491 (2010).
[Crossref]

K. Lee, K. P. Thompson, and J. P. Rolland, “Broadband astigmatism-corrected Czerny-Turner spectrometer,” Opt. Express 18(22), 23378–23384 (2010).
[Crossref]

J. M. Kwong, J. Caprioli, and N. Piri, “RNA binding protein with multiple splicing: a new marker for retinal ganglion cells,” Invest. Ophthalmol. Visual Sci. 51(2), 1052–1058 (2010).
[Crossref]

S. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Xu, G. Griffiths, J. Jiang, H. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Phys. Med. Biol. 55(1), 191–206 (2010).
[Crossref]

2009 (3)

B. E. Bouma, S. H. Yun, B. J. Vakoc, M. J. Suter, and G. J. Tearney, “Fourier-domain optical coherence tomography: recent advances toward clinical utility,” Curr. Opin. Biotechnol. 20(1), 111–118 (2009).
[Crossref]

A. Wax and K. Sokolov, “Molecular imaging and darkfield microspectroscopy of live cells using gold plasmonic nanoparticles,” Laser Photonics Rev. 3(1-2), 146–158 (2009).
[Crossref]

S. Murali, K. P. Thompson, and J. P. Rolland, “Three-dimensional adaptive microscopy using embedded liquid lens,” Opt. Lett. 34(2), 145–147 (2009).
[Crossref]

2007 (1)

Y. Fu and K. Yau, “Phototransduction in mouse rods and cones,” Pfluegers Arch. 454(5), 805–819 (2007).
[Crossref]

2006 (3)

2005 (2)

K. Lee, A. C. Akcay, T. Delemos, E. Clarkson, and J. P. Rolland, “Dispersion control with a Fourier-domain optical delay line in a fiber-optic imaging interferometer,” Appl. Opt. 44(19), 4009–4022 (2005).
[Crossref]

Z. G. Wang, D. B. Durand, M. Schoenberg, and Y. T. Pan, “Fluorescence guided optical coherence tomography for the diagnosis of early bladder cancer in a rat model,” J. Urol. 174(6), 2376–2381 (2005).
[Crossref]

2004 (3)

J. K. Barton, F. Guzman, and A. R. Tumlinson, “Dual modality instrument for simultaneous optical coherence tomography imaging and fluorescence spectroscopy,” J. Biomed. Opt. 9(3), 618–624 (2004).
[Crossref]

N. C. Shaner, R. E. Campbell, P. A. Steinbach, B. N. G. Giepmans, A. E. Palmer, and R. Y. Tsien, “Improved monomeric red, orange, and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein,” Nat. Biotechnol. 22(12), 1567–1572 (2004).
[Crossref]

A. R. Tumlinson, L. P. Hariri, U. Utzinger, and J. K. Barton, “Miniature endoscope for simultaneous optical coherence tomography and laser-induced fluorescence measurement,” Appl. Opt. 43(1), 113–121 (2004).
[Crossref]

2003 (5)

2002 (1)

R. V. Kuranov, V. V. Sapozhnikova, N. M. Shakhova, V. M. Gelikonov, E. V. Zagainova, and S. A. Petrova, “Combined application of optical methods to increase the information content of optical coherent tomography in diagnostics of neoplastic processes,” Quantum Electron. 32(11), 993–998 (2002).
[Crossref]

2001 (1)

R. J. McNichols, A. Gowda, B. A. Bell, R. M. Johnigan, K. H. Calhoun, and M. Motamedi, “Development of an endoscopic fluorescence image-guided OCT probe for oral cancer detection,” Proc. SPIE 4254, 23–30 (2001).
[Crossref]

2000 (2)

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E: Soft Matter Biol. Phys. 3(2), 159–163 (2000).
[Crossref]

U. Morgner, W. Drexler, F. X. Kärtner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett. 25(2), 111–113 (2000).
[Crossref]

1999 (2)

S. Kuchler-Bopp, J. P. Delaunoy, J. C. Artault, M. Zaepfel, and J. B. Dietrich, “Astrocytes induce several bold-brain barrier properties in non-neural endothelial cells,” NeuroReport 10(6), 1347–1353 (1999).
[Crossref]

E. Beaurepaire, L. Moreaux, F. Amblard, and J. Mertz, “Combined scanning optical coherence and two-photon-excited fluorescence microscopy,” Opt. Lett. 24(14), 969–971 (1999).
[Crossref]

1997 (3)

1995 (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[Crossref]

1992 (1)

K. R. Huxlin, A. J. Sefton, and J. H. Furby, “The origin and development of retinal astrocytes in the mouse,” J. Neurocytol. 21(7), 530–544 (1992).
[Crossref]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Akcay, A. C.

Akkin, T.

Amblard, F.

Ando, K.

M. Vanlandewijck, L. He, M. A. Mäe, J. Andrae, K. Ando, F. D. Gaudio, K. Nahar, T. Lebouvier, B. Laviña, L. Gouveia, Y. Sun, E. Raschperger, M. Räsänen, Y. Zarb, N. Mochizuki, A. Keller, U. Lendahl, and C. Betsholtz, “A molecular atlas of cell types and zonation in the brain vasculature,” Nature 554(7693), 475–480 (2018).
[Crossref]

Andrae, J.

M. Vanlandewijck, L. He, M. A. Mäe, J. Andrae, K. Ando, F. D. Gaudio, K. Nahar, T. Lebouvier, B. Laviña, L. Gouveia, Y. Sun, E. Raschperger, M. Räsänen, Y. Zarb, N. Mochizuki, A. Keller, U. Lendahl, and C. Betsholtz, “A molecular atlas of cell types and zonation in the brain vasculature,” Nature 554(7693), 475–480 (2018).
[Crossref]

Applegate, B. E.

Aranda, J.

Artault, J. C.

S. Kuchler-Bopp, J. P. Delaunoy, J. C. Artault, M. Zaepfel, and J. B. Dietrich, “Astrocytes induce several bold-brain barrier properties in non-neural endothelial cells,” NeuroReport 10(6), 1347–1353 (1999).
[Crossref]

Attwell, D.

D. Attwell, A. Mishra, C. N. Hall, F. M. O’Farrell, and T. Dalkara, “What is a pericyte?” J. Cereb. Blood Flow Metab. 36(2), 451–455 (2016).
[Crossref]

Auger, M.

Augustin, M.

A. Lichtenegger, J. Gesperger, B. Kiesel, M. Muck, P. Eugui, D. J. Harper, M. Salas, M. Augustin, C. W. Merkle, C. K. Hitzenberger, G. Widhalm, A. Wöhrer, and B. Baumann, “Revealing brain pathologies with multimodal visible light optical coherence microscopy and fluorescence imaging,” J. Biomed. Opt. 24(06), 1 (2019).
[Crossref]

Auksorius, E.

Barry, S.

Barton, J. K.

Bastacky, S.

Baumann, B.

A. Lichtenegger, J. Gesperger, B. Kiesel, M. Muck, P. Eugui, D. J. Harper, M. Salas, M. Augustin, C. W. Merkle, C. K. Hitzenberger, G. Widhalm, A. Wöhrer, and B. Baumann, “Revealing brain pathologies with multimodal visible light optical coherence microscopy and fluorescence imaging,” J. Biomed. Opt. 24(06), 1 (2019).
[Crossref]

Beaurepaire, E.

Bec, J.

Bell, B. A.

R. J. McNichols, A. Gowda, B. A. Bell, R. M. Johnigan, K. H. Calhoun, and M. Motamedi, “Development of an endoscopic fluorescence image-guided OCT probe for oral cancer detection,” Proc. SPIE 4254, 23–30 (2001).
[Crossref]

Ben Arous, J.

J. Ben Arous, J. Binding, J. F. Leger, M. Casado, P. Topilko, L. Bourdieu, S. Gigan, and A. C. Boccara, “Single myelin fiber imaging in living rodents without labeling by deep optical coherence microscopy,” J. Biomed. Opt. 16(11), 116012 (2011).
[Crossref]

Berge, B.

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E: Soft Matter Biol. Phys. 3(2), 159–163 (2000).
[Crossref]

Besselsen, D. G.

Betsholtz, C.

M. Vanlandewijck, L. He, M. A. Mäe, J. Andrae, K. Ando, F. D. Gaudio, K. Nahar, T. Lebouvier, B. Laviña, L. Gouveia, Y. Sun, E. Raschperger, M. Räsänen, Y. Zarb, N. Mochizuki, A. Keller, U. Lendahl, and C. Betsholtz, “A molecular atlas of cell types and zonation in the brain vasculature,” Nature 554(7693), 475–480 (2018).
[Crossref]

Biedermann, B. R.

Binding, J.

J. Ben Arous, J. Binding, J. F. Leger, M. Casado, P. Topilko, L. Bourdieu, S. Gigan, and A. C. Boccara, “Single myelin fiber imaging in living rodents without labeling by deep optical coherence microscopy,” J. Biomed. Opt. 16(11), 116012 (2011).
[Crossref]

Blatter, C.

Boas, D.

Boas, D. A.

M. A. Yaseen, V. J. Srinivasan, S. Sakadžić, H. Radhakrishnan, I. Gorczynska, W. Wu, J. G. Fujimoto, and D. A. Boas, “Microvascular oxygen tension and flow measurements in rodent cerebral cortex during baseline conditions and functional activation,” J. Cereb. Blood Flow Metab. 31(4), 1051–1063 (2011).
[Crossref]

Boccara, A. C.

J. Ben Arous, J. Binding, J. F. Leger, M. Casado, P. Topilko, L. Bourdieu, S. Gigan, and A. C. Boccara, “Single myelin fiber imaging in living rodents without labeling by deep optical coherence microscopy,” J. Biomed. Opt. 16(11), 116012 (2011).
[Crossref]

Boccara, C.

O. Thouvenin, M. Fink, and C. Boccara, “Dynamic multimodal full-field optical coherence tomography and fluorescence structured illumination microscopy,” J. Biomed. Opt. 22(2), 026004 (2017).
[Crossref]

Bonnema, G. T.

Boppart, S. A.

C. Xu, C. Vinegoni, T. S. Ralston, W. Luo, W. Tan, and S. A. Boppart, “Spectroscopic spectral-domain optical coherence microscopy,” Opt. Lett. 31(8), 1079–1081 (2006).
[Crossref]

C. Vinegoni, T. Ralston, W. Tan, W. Luo, D. L. Marks, and S. A. Boppart, “Integrated structural and functional optical imaging combining spectral-domain optical coherence and multiphoton microscopy,” Appl. Phys. Lett. 88(5), 053901 (2006).
[Crossref]

Boudoux, C.

Bouma, B. E.

Bourdieu, L.

J. Ben Arous, J. Binding, J. F. Leger, M. Casado, P. Topilko, L. Bourdieu, S. Gigan, and A. C. Boccara, “Single myelin fiber imaging in living rodents without labeling by deep optical coherence microscopy,” J. Biomed. Opt. 16(11), 116012 (2011).
[Crossref]

Bouwens, A.

Bromberg, Y.

Burns, M. E.

P. Zhang, A. Zam, Y. Jian, X. Wang, Y. Li, K. S. Lam, M. E. Burns, M. V. Sarunic, E. N. Jr, P. Jr, and R. J. Zawadzki, “In vivo wide-field multispectral scanning laser ophthalmoscopy-optical coherence tomography mouse retinal imager: longitudinal imaging of ganglion cells, microglia, and Müller glia, and mapping of the mouse retinal and choroidal vasculature,” J. Biomed. Opt. 20(12), 126005 (2015).
[Crossref]

Cable, A.

S. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Xu, G. Griffiths, J. Jiang, H. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Phys. Med. Biol. 55(1), 191–206 (2010).
[Crossref]

Cable, A. E.

Calhoun, K. H.

R. J. McNichols, A. Gowda, B. A. Bell, R. M. Johnigan, K. H. Calhoun, and M. Motamedi, “Development of an endoscopic fluorescence image-guided OCT probe for oral cancer detection,” Proc. SPIE 4254, 23–30 (2001).
[Crossref]

Campbell, R. E.

N. C. Shaner, R. E. Campbell, P. A. Steinbach, B. N. G. Giepmans, A. E. Palmer, and R. Y. Tsien, “Improved monomeric red, orange, and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein,” Nat. Biotechnol. 22(12), 1567–1572 (2004).
[Crossref]

Canavesi, C.

Caprioli, J.

J. M. Kwong, J. Caprioli, and N. Piri, “RNA binding protein with multiple splicing: a new marker for retinal ganglion cells,” Invest. Ophthalmol. Visual Sci. 51(2), 1052–1058 (2010).
[Crossref]

Casado, M.

J. Ben Arous, J. Binding, J. F. Leger, M. Casado, P. Topilko, L. Bourdieu, S. Gigan, and A. C. Boccara, “Single myelin fiber imaging in living rodents without labeling by deep optical coherence microscopy,” J. Biomed. Opt. 16(11), 116012 (2011).
[Crossref]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Chen, C. W.

S. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Xu, G. Griffiths, J. Jiang, H. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Phys. Med. Biol. 55(1), 191–206 (2010).
[Crossref]

Chen, N.

Chen, Y.

J. Xi, Y. Chen, Y. Zhang, K. Murari, M. J. Li, and X. Li, “Integrated multimodal endomicroscopy platform for simultaneous en face optical coherence and two-photon fluorescence imaging,” Opt. Lett. 37(3), 362–364 (2012).
[Crossref]

J. Mavadia, J. Xi, Y. Chen, and X. Li, “An all-fiber-optic endoscopy platform for simultaneous OCT and fluorescence imaging,” Biomed. Opt. Express 3(11), 2851–2859 (2012).
[Crossref]

S. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Xu, G. Griffiths, J. Jiang, H. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Phys. Med. Biol. 55(1), 191–206 (2010).
[Crossref]

Chen, Z.

S. Liang, A. Saidi, J. Jing, G. Liu, J. Li, J. Zhang, C. Sun, J. Narula, and Z. Chen, “Intravascular atherosclerotic imaging with combined fluorescence and optical coherence tomography probe based on a double-clad fiber combiner,” J. Biomed. Opt. 17(7), 0705011 (2012).
[Crossref]

Chinn, S. R.

Choma, M. A.

Chung, W.

Cimalla, P.

M. Gärtner, P. Cimalla, S. Meissner, E. Koch, and W. M. Kübler, “Three-dimensional simultaneous optical coherence tomography and confocal fluorescence microscopy for investigation of lung tissue,” J. Biomed. Opt. 17(7), 071310 (2012).
[Crossref]

Clarkson, E.

Cogliati, A.

Coquoz, S.

Coron, E.

Cramer, A.

Cui, Q.

Q. Cui, H. K. Yip, R. C. Zhao, K. F. So, and A. R. Harvey, “Intraocular elevation of cyclic AMP potentiates ciliary neurotrophic factor-induced regeneration of adult rat retinal ganglion cell axons,” Mol. Cell. Neurosci. 22(1), 49–61 (2003).
[Crossref]

Dalkara, T.

D. Attwell, A. Mishra, C. N. Hall, F. M. O’Farrell, and T. Dalkara, “What is a pericyte?” J. Cereb. Blood Flow Metab. 36(2), 451–455 (2016).
[Crossref]

de Boer, J. F.

Delaunoy, J. P.

S. Kuchler-Bopp, J. P. Delaunoy, J. C. Artault, M. Zaepfel, and J. B. Dietrich, “Astrocytes induce several bold-brain barrier properties in non-neural endothelial cells,” NeuroReport 10(6), 1347–1353 (1999).
[Crossref]

Delemos, T.

Descloux, A.

Dietrich, J. B.

S. Kuchler-Bopp, J. P. Delaunoy, J. C. Artault, M. Zaepfel, and J. B. Dietrich, “Astrocytes induce several bold-brain barrier properties in non-neural endothelial cells,” NeuroReport 10(6), 1347–1353 (1999).
[Crossref]

Doh, J.

Drexler, W.

U. Morgner, W. Drexler, F. X. Kärtner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett. 25(2), 111–113 (2000).
[Crossref]

W. Drexler and J. G. Fujimoto, Optical Coherence Tomography-Technology and Applications-2nd Ed. (Springer International Publishing, Switzerland, 2015).
[Crossref]

Du, C. W.

Duan, L.

L. Duan, S. J. Pan, T. N. Sato, and G. Fong, “Retinal angiogenesis regulates astrocytic differentiation in neonatal mouse retinas by oxygen dependent mechanisms,” Sci. Rep. 7(1), 17608 (2017).
[Crossref]

Dubb, J.

Duma, V. F.

Durand, D. B.

Z. G. Wang, D. B. Durand, M. Schoenberg, and Y. T. Pan, “Fluorescence guided optical coherence tomography for the diagnosis of early bladder cancer in a rat model,” J. Urol. 174(6), 2376–2381 (2005).
[Crossref]

Eigenwilling, C. M.

El-Zaiat, S. Y.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[Crossref]

Eugui, P.

A. Lichtenegger, J. Gesperger, B. Kiesel, M. Muck, P. Eugui, D. J. Harper, M. Salas, M. Augustin, C. W. Merkle, C. K. Hitzenberger, G. Widhalm, A. Wöhrer, and B. Baumann, “Revealing brain pathologies with multimodal visible light optical coherence microscopy and fluorescence imaging,” J. Biomed. Opt. 24(06), 1 (2019).
[Crossref]

Extermann, J.

Fechtig, D.

Fercher, A. F.

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
[Crossref]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[Crossref]

Fink, M.

O. Thouvenin, M. Fink, and C. Boccara, “Dynamic multimodal full-field optical coherence tomography and fluorescence structured illumination microscopy,” J. Biomed. Opt. 22(2), 026004 (2017).
[Crossref]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Fong, G.

L. Duan, S. J. Pan, T. N. Sato, and G. Fong, “Retinal angiogenesis regulates astrocytic differentiation in neonatal mouse retinas by oxygen dependent mechanisms,” Sci. Rep. 7(1), 17608 (2017).
[Crossref]

Fu, Y.

Y. Fu and K. Yau, “Phototransduction in mouse rods and cones,” Pfluegers Arch. 454(5), 805–819 (2007).
[Crossref]

Fujimoto, J. G.

M. A. Yaseen, V. J. Srinivasan, S. Sakadžić, H. Radhakrishnan, I. Gorczynska, W. Wu, J. G. Fujimoto, and D. A. Boas, “Microvascular oxygen tension and flow measurements in rodent cerebral cortex during baseline conditions and functional activation,” J. Cereb. Blood Flow Metab. 31(4), 1051–1063 (2011).
[Crossref]

U. Morgner, W. Drexler, F. X. Kärtner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett. 25(2), 111–113 (2000).
[Crossref]

G. J. Tearney, B. E. Bouma, and J. G. Fujimoto, “High-speed phase- and group-delay scanning with a grating-based phase control delay line,” Opt. Lett. 22(23), 1811–1813 (1997).
[Crossref]

B. Golubovic, B. E. Bouma, G. J. Tearney, and J. G. Fujimoto, “Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr/sup 4+/:forsterite laser,” Opt. Lett. 22(22), 1704–1706 (1997).
[Crossref]

S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22(5), 340–342 (1997).
[Crossref]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

W. Drexler and J. G. Fujimoto, Optical Coherence Tomography-Technology and Applications-2nd Ed. (Springer International Publishing, Switzerland, 2015).
[Crossref]

Furby, J. H.

K. R. Huxlin, A. J. Sefton, and J. H. Furby, “The origin and development of retinal astrocytes in the mouse,” J. Neurocytol. 21(7), 530–544 (1992).
[Crossref]

Gärtner, M.

M. Gärtner, P. Cimalla, S. Meissner, E. Koch, and W. M. Kübler, “Three-dimensional simultaneous optical coherence tomography and confocal fluorescence microscopy for investigation of lung tissue,” J. Biomed. Opt. 17(7), 071310 (2012).
[Crossref]

Gaudio, F. D.

M. Vanlandewijck, L. He, M. A. Mäe, J. Andrae, K. Ando, F. D. Gaudio, K. Nahar, T. Lebouvier, B. Laviña, L. Gouveia, Y. Sun, E. Raschperger, M. Räsänen, Y. Zarb, N. Mochizuki, A. Keller, U. Lendahl, and C. Betsholtz, “A molecular atlas of cell types and zonation in the brain vasculature,” Nature 554(7693), 475–480 (2018).
[Crossref]

Gelikonov, V. M.

R. V. Kuranov, V. V. Sapozhnikova, N. M. Shakhova, V. M. Gelikonov, E. V. Zagainova, and S. A. Petrova, “Combined application of optical methods to increase the information content of optical coherent tomography in diagnostics of neoplastic processes,” Quantum Electron. 32(11), 993–998 (2002).
[Crossref]

Gerner, E. W.

Gesperger, J.

A. Lichtenegger, J. Gesperger, B. Kiesel, M. Muck, P. Eugui, D. J. Harper, M. Salas, M. Augustin, C. W. Merkle, C. K. Hitzenberger, G. Widhalm, A. Wöhrer, and B. Baumann, “Revealing brain pathologies with multimodal visible light optical coherence microscopy and fluorescence imaging,” J. Biomed. Opt. 24(06), 1 (2019).
[Crossref]

Giepmans, B. N. G.

N. C. Shaner, R. E. Campbell, P. A. Steinbach, B. N. G. Giepmans, A. E. Palmer, and R. Y. Tsien, “Improved monomeric red, orange, and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein,” Nat. Biotechnol. 22(12), 1567–1572 (2004).
[Crossref]

Gigan, S.

J. Ben Arous, J. Binding, J. F. Leger, M. Casado, P. Topilko, L. Bourdieu, S. Gigan, and A. C. Boccara, “Single myelin fiber imaging in living rodents without labeling by deep optical coherence microscopy,” J. Biomed. Opt. 16(11), 116012 (2011).
[Crossref]

Ginner, L.

Godbout, N.

Goldstein, A. M.

Golubovic, B.

Gorczynska, I.

M. A. Yaseen, V. J. Srinivasan, S. Sakadžić, H. Radhakrishnan, I. Gorczynska, W. Wu, J. G. Fujimoto, and D. A. Boas, “Microvascular oxygen tension and flow measurements in rodent cerebral cortex during baseline conditions and functional activation,” J. Cereb. Blood Flow Metab. 31(4), 1051–1063 (2011).
[Crossref]

Gouveia, L.

M. Vanlandewijck, L. He, M. A. Mäe, J. Andrae, K. Ando, F. D. Gaudio, K. Nahar, T. Lebouvier, B. Laviña, L. Gouveia, Y. Sun, E. Raschperger, M. Räsänen, Y. Zarb, N. Mochizuki, A. Keller, U. Lendahl, and C. Betsholtz, “A molecular atlas of cell types and zonation in the brain vasculature,” Nature 554(7693), 475–480 (2018).
[Crossref]

Gowda, A.

R. J. McNichols, A. Gowda, B. A. Bell, R. M. Johnigan, K. H. Calhoun, and M. Motamedi, “Development of an endoscopic fluorescence image-guided OCT probe for oral cancer detection,” Proc. SPIE 4254, 23–30 (2001).
[Crossref]

Grajciar, B.

Grant, G.

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics 5(12), 744–747 (2011).
[Crossref]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Griffiths, G.

S. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Xu, G. Griffiths, J. Jiang, H. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Phys. Med. Biol. 55(1), 191–206 (2010).
[Crossref]

Guzman, F.

J. K. Barton, F. Guzman, and A. R. Tumlinson, “Dual modality instrument for simultaneous optical coherence tomography imaging and fluorescence spectroscopy,” J. Biomed. Opt. 9(3), 618–624 (2004).
[Crossref]

Hall, C. N.

D. Attwell, A. Mishra, C. N. Hall, F. M. O’Farrell, and T. Dalkara, “What is a pericyte?” J. Cereb. Blood Flow Metab. 36(2), 451–455 (2016).
[Crossref]

Hariri, L. P.

Harper, D. J.

A. Lichtenegger, J. Gesperger, B. Kiesel, M. Muck, P. Eugui, D. J. Harper, M. Salas, M. Augustin, C. W. Merkle, C. K. Hitzenberger, G. Widhalm, A. Wöhrer, and B. Baumann, “Revealing brain pathologies with multimodal visible light optical coherence microscopy and fluorescence imaging,” J. Biomed. Opt. 24(06), 1 (2019).
[Crossref]

Hartmann, D. A.

D. A. Hartmann, R. G. Underly, A. N. Watson, and A. Y. Shih, “A murine toolbox for imaging the neurovascular unit,” Microcirculation 22(3), 168–182 (2015).
[Crossref]

Harvey, A. R.

Q. Cui, H. K. Yip, R. C. Zhao, K. F. So, and A. R. Harvey, “Intraocular elevation of cyclic AMP potentiates ciliary neurotrophic factor-induced regeneration of adult rat retinal ganglion cell axons,” Mol. Cell. Neurosci. 22(1), 49–61 (2003).
[Crossref]

Hayes, A.

He, L.

M. Vanlandewijck, L. He, M. A. Mäe, J. Andrae, K. Ando, F. D. Gaudio, K. Nahar, T. Lebouvier, B. Laviña, L. Gouveia, Y. Sun, E. Raschperger, M. Räsänen, Y. Zarb, N. Mochizuki, A. Keller, U. Lendahl, and C. Betsholtz, “A molecular atlas of cell types and zonation in the brain vasculature,” Nature 554(7693), 475–480 (2018).
[Crossref]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Hitzenberger, C. K.

A. Lichtenegger, J. Gesperger, B. Kiesel, M. Muck, P. Eugui, D. J. Harper, M. Salas, M. Augustin, C. W. Merkle, C. K. Hitzenberger, G. Widhalm, A. Wöhrer, and B. Baumann, “Revealing brain pathologies with multimodal visible light optical coherence microscopy and fluorescence imaging,” J. Biomed. Opt. 24(06), 1 (2019).
[Crossref]

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
[Crossref]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[Crossref]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Huber, R.

Huxlin, K. R.

K. R. Huxlin, A. J. Sefton, and J. H. Furby, “The origin and development of retinal astrocytes in the mouse,” J. Neurocytol. 21(7), 530–544 (1992).
[Crossref]

Ippen, E. P.

Izatt, J. A.

Jang, M.

Jang, W.

Jeong, B.

Jian, Y.

P. Zhang, A. Zam, Y. Jian, X. Wang, Y. Li, K. S. Lam, M. E. Burns, M. V. Sarunic, E. N. Jr, P. Jr, and R. J. Zawadzki, “In vivo wide-field multispectral scanning laser ophthalmoscopy-optical coherence tomography mouse retinal imager: longitudinal imaging of ganglion cells, microglia, and Müller glia, and mapping of the mouse retinal and choroidal vasculature,” J. Biomed. Opt. 20(12), 126005 (2015).
[Crossref]

Jiang, J.

S. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Xu, G. Griffiths, J. Jiang, H. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Phys. Med. Biol. 55(1), 191–206 (2010).
[Crossref]

Jiang, J. Y.

Jiang, M.

Jiao, S.

Jing, J.

S. Liang, A. Saidi, J. Jing, G. Liu, J. Li, J. Zhang, C. Sun, J. Narula, and Z. Chen, “Intravascular atherosclerotic imaging with combined fluorescence and optical coherence tomography probe based on a double-clad fiber combiner,” J. Biomed. Opt. 17(7), 0705011 (2012).
[Crossref]

Jo, J. A.

Johnigan, R. M.

R. J. McNichols, A. Gowda, B. A. Bell, R. M. Johnigan, K. H. Calhoun, and M. Motamedi, “Development of an endoscopic fluorescence image-guided OCT probe for oral cancer detection,” Proc. SPIE 4254, 23–30 (2001).
[Crossref]

Joo, C.

Jr, E. N.

P. Zhang, A. Zam, Y. Jian, X. Wang, Y. Li, K. S. Lam, M. E. Burns, M. V. Sarunic, E. N. Jr, P. Jr, and R. J. Zawadzki, “In vivo wide-field multispectral scanning laser ophthalmoscopy-optical coherence tomography mouse retinal imager: longitudinal imaging of ganglion cells, microglia, and Müller glia, and mapping of the mouse retinal and choroidal vasculature,” J. Biomed. Opt. 20(12), 126005 (2015).
[Crossref]

Jr, P.

P. Zhang, A. Zam, Y. Jian, X. Wang, Y. Li, K. S. Lam, M. E. Burns, M. V. Sarunic, E. N. Jr, P. Jr, and R. J. Zawadzki, “In vivo wide-field multispectral scanning laser ophthalmoscopy-optical coherence tomography mouse retinal imager: longitudinal imaging of ganglion cells, microglia, and Müller glia, and mapping of the mouse retinal and choroidal vasculature,” J. Biomed. Opt. 20(12), 126005 (2015).
[Crossref]

Kah, J. C. Y.

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[Crossref]

Kärtner, F. X.

Kazlauskas, A.

Keller, A.

M. Vanlandewijck, L. He, M. A. Mäe, J. Andrae, K. Ando, F. D. Gaudio, K. Nahar, T. Lebouvier, B. Laviña, L. Gouveia, Y. Sun, E. Raschperger, M. Räsänen, Y. Zarb, N. Mochizuki, A. Keller, U. Lendahl, and C. Betsholtz, “A molecular atlas of cell types and zonation in the brain vasculature,” Nature 554(7693), 475–480 (2018).
[Crossref]

Kiesel, B.

A. Lichtenegger, J. Gesperger, B. Kiesel, M. Muck, P. Eugui, D. J. Harper, M. Salas, M. Augustin, C. W. Merkle, C. K. Hitzenberger, G. Widhalm, A. Wöhrer, and B. Baumann, “Revealing brain pathologies with multimodal visible light optical coherence microscopy and fluorescence imaging,” J. Biomed. Opt. 24(06), 1 (2019).
[Crossref]

Kim, B.

Kim, K.

Kim, T.

X. Yao, T. Son, T. Kim, and Y. Lu, “Functional optical coherence tomography of retinal photoreceptors,” Exp. Biol. Med. 243(17-18), 1256–1264 (2018).
[Crossref]

Kirk, R. W.

Kirkpatrick, N. D.

Koch, E.

M. Gärtner, P. Cimalla, S. Meissner, E. Koch, and W. M. Kübler, “Three-dimensional simultaneous optical coherence tomography and confocal fluorescence microscopy for investigation of lung tissue,” J. Biomed. Opt. 17(7), 071310 (2012).
[Crossref]

Kostis, W. J.

Kübler, W. M.

M. Gärtner, P. Cimalla, S. Meissner, E. Koch, and W. M. Kübler, “Three-dimensional simultaneous optical coherence tomography and confocal fluorescence microscopy for investigation of lung tissue,” J. Biomed. Opt. 17(7), 071310 (2012).
[Crossref]

Kuchler-Bopp, S.

S. Kuchler-Bopp, J. P. Delaunoy, J. C. Artault, M. Zaepfel, and J. B. Dietrich, “Astrocytes induce several bold-brain barrier properties in non-neural endothelial cells,” NeuroReport 10(6), 1347–1353 (1999).
[Crossref]

Kuhn, W. P.

Kumar, A.

Kuranov, R. V.

R. V. Kuranov, V. V. Sapozhnikova, N. M. Shakhova, V. M. Gelikonov, E. V. Zagainova, and S. A. Petrova, “Combined application of optical methods to increase the information content of optical coherent tomography in diagnostics of neoplastic processes,” Quantum Electron. 32(11), 993–998 (2002).
[Crossref]

Kwong, J. M.

J. M. Kwong, J. Caprioli, and N. Piri, “RNA binding protein with multiple splicing: a new marker for retinal ganglion cells,” Invest. Ophthalmol. Visual Sci. 51(2), 1052–1058 (2010).
[Crossref]

Lam, K. S.

P. Zhang, A. Zam, Y. Jian, X. Wang, Y. Li, K. S. Lam, M. E. Burns, M. V. Sarunic, E. N. Jr, P. Jr, and R. J. Zawadzki, “In vivo wide-field multispectral scanning laser ophthalmoscopy-optical coherence tomography mouse retinal imager: longitudinal imaging of ganglion cells, microglia, and Müller glia, and mapping of the mouse retinal and choroidal vasculature,” J. Biomed. Opt. 20(12), 126005 (2015).
[Crossref]

Lasser, T.

Laviña, B.

M. Vanlandewijck, L. He, M. A. Mäe, J. Andrae, K. Ando, F. D. Gaudio, K. Nahar, T. Lebouvier, B. Laviña, L. Gouveia, Y. Sun, E. Raschperger, M. Räsänen, Y. Zarb, N. Mochizuki, A. Keller, U. Lendahl, and C. Betsholtz, “A molecular atlas of cell types and zonation in the brain vasculature,” Nature 554(7693), 475–480 (2018).
[Crossref]

Le, V. H.

Leahy, C.

Lebouvier, T.

M. Vanlandewijck, L. He, M. A. Mäe, J. Andrae, K. Ando, F. D. Gaudio, K. Nahar, T. Lebouvier, B. Laviña, L. Gouveia, Y. Sun, E. Raschperger, M. Räsänen, Y. Zarb, N. Mochizuki, A. Keller, U. Lendahl, and C. Betsholtz, “A molecular atlas of cell types and zonation in the brain vasculature,” Nature 554(7693), 475–480 (2018).
[Crossref]

Lee, B.

Lee, K.

Leger, J. F.

J. Ben Arous, J. Binding, J. F. Leger, M. Casado, P. Topilko, L. Bourdieu, S. Gigan, and A. C. Boccara, “Single myelin fiber imaging in living rodents without labeling by deep optical coherence microscopy,” J. Biomed. Opt. 16(11), 116012 (2011).
[Crossref]

Leitgeb, R.

Leitgeb, R. A.

Lendahl, U.

M. Vanlandewijck, L. He, M. A. Mäe, J. Andrae, K. Ando, F. D. Gaudio, K. Nahar, T. Lebouvier, B. Laviña, L. Gouveia, Y. Sun, E. Raschperger, M. Räsänen, Y. Zarb, N. Mochizuki, A. Keller, U. Lendahl, and C. Betsholtz, “A molecular atlas of cell types and zonation in the brain vasculature,” Nature 554(7693), 475–480 (2018).
[Crossref]

Li, J.

S. Liang, A. Saidi, J. Jing, G. Liu, J. Li, J. Zhang, C. Sun, J. Narula, and Z. Chen, “Intravascular atherosclerotic imaging with combined fluorescence and optical coherence tomography probe based on a double-clad fiber combiner,” J. Biomed. Opt. 17(7), 0705011 (2012).
[Crossref]

Li, M. J.

Li, Q.

Li, X.

Li, X. D.

Li, Y.

P. Zhang, A. Zam, Y. Jian, X. Wang, Y. Li, K. S. Lam, M. E. Burns, M. V. Sarunic, E. N. Jr, P. Jr, and R. J. Zawadzki, “In vivo wide-field multispectral scanning laser ophthalmoscopy-optical coherence tomography mouse retinal imager: longitudinal imaging of ganglion cells, microglia, and Müller glia, and mapping of the mouse retinal and choroidal vasculature,” J. Biomed. Opt. 20(12), 126005 (2015).
[Crossref]

Liang, S.

S. Liang, A. Saidi, J. Jing, G. Liu, J. Li, J. Zhang, C. Sun, J. Narula, and Z. Chen, “Intravascular atherosclerotic imaging with combined fluorescence and optical coherence tomography probe based on a double-clad fiber combiner,” J. Biomed. Opt. 17(7), 0705011 (2012).
[Crossref]

Lichtenegger, A.

A. Lichtenegger, J. Gesperger, B. Kiesel, M. Muck, P. Eugui, D. J. Harper, M. Salas, M. Augustin, C. W. Merkle, C. K. Hitzenberger, G. Widhalm, A. Wöhrer, and B. Baumann, “Revealing brain pathologies with multimodal visible light optical coherence microscopy and fluorescence imaging,” J. Biomed. Opt. 24(06), 1 (2019).
[Crossref]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Liu, G.

S. Liang, A. Saidi, J. Jing, G. Liu, J. Li, J. Zhang, C. Sun, J. Narula, and Z. Chen, “Intravascular atherosclerotic imaging with combined fluorescence and optical coherence tomography probe based on a double-clad fiber combiner,” J. Biomed. Opt. 17(7), 0705011 (2012).
[Crossref]

Liu, L.

Lorenser, D.

Lu, Y.

X. Yao, T. Son, T. Kim, and Y. Lu, “Functional optical coherence tomography of retinal photoreceptors,” Exp. Biol. Med. 243(17-18), 1256–1264 (2018).
[Crossref]

Luo, W.

C. Xu, C. Vinegoni, T. S. Ralston, W. Luo, W. Tan, and S. A. Boppart, “Spectroscopic spectral-domain optical coherence microscopy,” Opt. Lett. 31(8), 1079–1081 (2006).
[Crossref]

C. Vinegoni, T. Ralston, W. Tan, W. Luo, D. L. Marks, and S. A. Boppart, “Integrated structural and functional optical imaging combining spectral-domain optical coherence and multiphoton microscopy,” Appl. Phys. Lett. 88(5), 053901 (2006).
[Crossref]

Ma, H.

S. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Xu, G. Griffiths, J. Jiang, H. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Phys. Med. Biol. 55(1), 191–206 (2010).
[Crossref]

Madore, W. J.

Mäe, M. A.

M. Vanlandewijck, L. He, M. A. Mäe, J. Andrae, K. Ando, F. D. Gaudio, K. Nahar, T. Lebouvier, B. Laviña, L. Gouveia, Y. Sun, E. Raschperger, M. Räsänen, Y. Zarb, N. Mochizuki, A. Keller, U. Lendahl, and C. Betsholtz, “A molecular atlas of cell types and zonation in the brain vasculature,” Nature 554(7693), 475–480 (2018).
[Crossref]

Magnain, C.

Marchand, P. J.

Marcu, L.

Marks, D. L.

C. Vinegoni, T. Ralston, W. Tan, W. Luo, D. L. Marks, and S. A. Boppart, “Integrated structural and functional optical imaging combining spectral-domain optical coherence and multiphoton microscopy,” Appl. Phys. Lett. 88(5), 053901 (2006).
[Crossref]

Mavadia, J.

McLaughlin, R. A.

McNally, J. B.

McNichols, R. J.

R. J. McNichols, A. Gowda, B. A. Bell, R. M. Johnigan, K. H. Calhoun, and M. Motamedi, “Development of an endoscopic fluorescence image-guided OCT probe for oral cancer detection,” Proc. SPIE 4254, 23–30 (2001).
[Crossref]

Meemon, P.

Mehta, K.

Meissner, S.

M. Gärtner, P. Cimalla, S. Meissner, E. Koch, and W. M. Kübler, “Three-dimensional simultaneous optical coherence tomography and confocal fluorescence microscopy for investigation of lung tissue,” J. Biomed. Opt. 17(7), 071310 (2012).
[Crossref]

Merkle, C. W.

A. Lichtenegger, J. Gesperger, B. Kiesel, M. Muck, P. Eugui, D. J. Harper, M. Salas, M. Augustin, C. W. Merkle, C. K. Hitzenberger, G. Widhalm, A. Wöhrer, and B. Baumann, “Revealing brain pathologies with multimodal visible light optical coherence microscopy and fluorescence imaging,” J. Biomed. Opt. 24(06), 1 (2019).
[Crossref]

Mertz, J.

Meyers, S.

Mishra, A.

D. Attwell, A. Mishra, C. N. Hall, F. M. O’Farrell, and T. Dalkara, “What is a pericyte?” J. Cereb. Blood Flow Metab. 36(2), 451–455 (2016).
[Crossref]

Mochizuki, N.

M. Vanlandewijck, L. He, M. A. Mäe, J. Andrae, K. Ando, F. D. Gaudio, K. Nahar, T. Lebouvier, B. Laviña, L. Gouveia, Y. Sun, E. Raschperger, M. Räsänen, Y. Zarb, N. Mochizuki, A. Keller, U. Lendahl, and C. Betsholtz, “A molecular atlas of cell types and zonation in the brain vasculature,” Nature 554(7693), 475–480 (2018).
[Crossref]

Moreaux, L.

Morgner, U.

Motamedi, M.

R. J. McNichols, A. Gowda, B. A. Bell, R. M. Johnigan, K. H. Calhoun, and M. Motamedi, “Development of an endoscopic fluorescence image-guided OCT probe for oral cancer detection,” Proc. SPIE 4254, 23–30 (2001).
[Crossref]

Motiejunaite, R.

Muck, M.

A. Lichtenegger, J. Gesperger, B. Kiesel, M. Muck, P. Eugui, D. J. Harper, M. Salas, M. Augustin, C. W. Merkle, C. K. Hitzenberger, G. Widhalm, A. Wöhrer, and B. Baumann, “Revealing brain pathologies with multimodal visible light optical coherence microscopy and fluorescence imaging,” J. Biomed. Opt. 24(06), 1 (2019).
[Crossref]

Murali, S.

Murari, K.

Nafar, Z.

Nahar, K.

M. Vanlandewijck, L. He, M. A. Mäe, J. Andrae, K. Ando, F. D. Gaudio, K. Nahar, T. Lebouvier, B. Laviña, L. Gouveia, Y. Sun, E. Raschperger, M. Räsänen, Y. Zarb, N. Mochizuki, A. Keller, U. Lendahl, and C. Betsholtz, “A molecular atlas of cell types and zonation in the brain vasculature,” Nature 554(7693), 475–480 (2018).
[Crossref]

Nam, H.

Narula, J.

S. Liang, A. Saidi, J. Jing, G. Liu, J. Li, J. Zhang, C. Sun, J. Narula, and Z. Chen, “Intravascular atherosclerotic imaging with combined fluorescence and optical coherence tomography probe based on a double-clad fiber combiner,” J. Biomed. Opt. 17(7), 0705011 (2012).
[Crossref]

Nguyen, D.

O’Farrell, F. M.

D. Attwell, A. Mishra, C. N. Hall, F. M. O’Farrell, and T. Dalkara, “What is a pericyte?” J. Cereb. Blood Flow Metab. 36(2), 451–455 (2016).
[Crossref]

Pache, C.

Palmer, A. E.

N. C. Shaner, R. E. Campbell, P. A. Steinbach, B. N. G. Giepmans, A. E. Palmer, and R. Y. Tsien, “Improved monomeric red, orange, and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein,” Nat. Biotechnol. 22(12), 1567–1572 (2004).
[Crossref]

Pan, S. J.

L. Duan, S. J. Pan, T. N. Sato, and G. Fong, “Retinal angiogenesis regulates astrocytic differentiation in neonatal mouse retinas by oxygen dependent mechanisms,” Sci. Rep. 7(1), 17608 (2017).
[Crossref]

Pan, Y. T.

Z. G. Wang, D. B. Durand, M. Schoenberg, and Y. T. Pan, “Fluorescence guided optical coherence tomography for the diagnosis of early bladder cancer in a rat model,” J. Urol. 174(6), 2376–2381 (2005).
[Crossref]

Y. T. Pan, T. Q. Xie, C. W. Du, S. Bastacky, S. Meyers, and M. L. Zeidel, “Enhancing early bladder cancer detection with fluorescence-guided endoscopic optical coherent tomography,” Opt. Lett. 28(24), 2485–2487 (2003).
[Crossref]

Pande, P.

Park, J.

Peseux, J.

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E: Soft Matter Biol. Phys. 3(2), 159–163 (2000).
[Crossref]

Petrova, S. A.

R. V. Kuranov, V. V. Sapozhnikova, N. M. Shakhova, V. M. Gelikonov, E. V. Zagainova, and S. A. Petrova, “Combined application of optical methods to increase the information content of optical coherent tomography in diagnostics of neoplastic processes,” Quantum Electron. 32(11), 993–998 (2002).
[Crossref]

Phipps, J. E.

Pieretti, A.

Pircher, M.

Piri, N.

J. M. Kwong, J. Caprioli, and N. Piri, “RNA binding protein with multiple splicing: a new marker for retinal ganglion cells,” Invest. Ophthalmol. Visual Sci. 51(2), 1052–1058 (2010).
[Crossref]

Pitris, C.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Quirk, B. C.

Radhakrishnan, H.

Ralston, T.

C. Vinegoni, T. Ralston, W. Tan, W. Luo, D. L. Marks, and S. A. Boppart, “Integrated structural and functional optical imaging combining spectral-domain optical coherence and multiphoton microscopy,” Appl. Phys. Lett. 88(5), 053901 (2006).
[Crossref]

Ralston, T. S.

Räsänen, M.

M. Vanlandewijck, L. He, M. A. Mäe, J. Andrae, K. Ando, F. D. Gaudio, K. Nahar, T. Lebouvier, B. Laviña, L. Gouveia, Y. Sun, E. Raschperger, M. Räsänen, Y. Zarb, N. Mochizuki, A. Keller, U. Lendahl, and C. Betsholtz, “A molecular atlas of cell types and zonation in the brain vasculature,” Nature 554(7693), 475–480 (2018).
[Crossref]

Raschperger, E.

M. Vanlandewijck, L. He, M. A. Mäe, J. Andrae, K. Ando, F. D. Gaudio, K. Nahar, T. Lebouvier, B. Laviña, L. Gouveia, Y. Sun, E. Raschperger, M. Räsänen, Y. Zarb, N. Mochizuki, A. Keller, U. Lendahl, and C. Betsholtz, “A molecular atlas of cell types and zonation in the brain vasculature,” Nature 554(7693), 475–480 (2018).
[Crossref]

Robles, F. E.

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics 5(12), 744–747 (2011).
[Crossref]

Rolland, J. P.

Roney, C. A.

S. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Xu, G. Griffiths, J. Jiang, H. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Phys. Med. Biol. 55(1), 191–206 (2010).
[Crossref]

Saidi, A.

S. Liang, A. Saidi, J. Jing, G. Liu, J. Li, J. Zhang, C. Sun, J. Narula, and Z. Chen, “Intravascular atherosclerotic imaging with combined fluorescence and optical coherence tomography probe based on a double-clad fiber combiner,” J. Biomed. Opt. 17(7), 0705011 (2012).
[Crossref]

Sakadžic, S.

H. Wang, T. Akkin, C. Magnain, R. Wang, J. Dubb, W. J. Kostis, M. A. Yaseen, A. Cramer, S. Sakadžić, and D. Boas, “Polarization sensitive optical coherence microscopy for brain imaging,” Opt. Lett. 41(10), 2213–2216 (2016).
[Crossref]

M. A. Yaseen, V. J. Srinivasan, S. Sakadžić, H. Radhakrishnan, I. Gorczynska, W. Wu, J. G. Fujimoto, and D. A. Boas, “Microvascular oxygen tension and flow measurements in rodent cerebral cortex during baseline conditions and functional activation,” J. Cereb. Blood Flow Metab. 31(4), 1051–1063 (2011).
[Crossref]

Salas, M.

A. Lichtenegger, J. Gesperger, B. Kiesel, M. Muck, P. Eugui, D. J. Harper, M. Salas, M. Augustin, C. W. Merkle, C. K. Hitzenberger, G. Widhalm, A. Wöhrer, and B. Baumann, “Revealing brain pathologies with multimodal visible light optical coherence microscopy and fluorescence imaging,” J. Biomed. Opt. 24(06), 1 (2019).
[Crossref]

L. Ginner, A. Kumar, D. Fechtig, L. M. Wurster, M. Salas, M. Pircher, and R. A. Leitgeb, “Noniterative digital aberration correction for cellular resolution retinal optical coherence tomography in vivo,” Optica 4(8), 924–931 (2017).
[Crossref]

Sampson, D. D.

Santhanam, A.

Sapozhnikova, V. V.

R. V. Kuranov, V. V. Sapozhnikova, N. M. Shakhova, V. M. Gelikonov, E. V. Zagainova, and S. A. Petrova, “Combined application of optical methods to increase the information content of optical coherent tomography in diagnostics of neoplastic processes,” Quantum Electron. 32(11), 993–998 (2002).
[Crossref]

Sarunic, M. V.

P. Zhang, A. Zam, Y. Jian, X. Wang, Y. Li, K. S. Lam, M. E. Burns, M. V. Sarunic, E. N. Jr, P. Jr, and R. J. Zawadzki, “In vivo wide-field multispectral scanning laser ophthalmoscopy-optical coherence tomography mouse retinal imager: longitudinal imaging of ganglion cells, microglia, and Müller glia, and mapping of the mouse retinal and choroidal vasculature,” J. Biomed. Opt. 20(12), 126005 (2015).
[Crossref]

M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).
[Crossref]

Sato, T. N.

L. Duan, S. J. Pan, T. N. Sato, and G. Fong, “Retinal angiogenesis regulates astrocytic differentiation in neonatal mouse retinas by oxygen dependent mechanisms,” Sci. Rep. 7(1), 17608 (2017).
[Crossref]

Schoenberg, M.

Z. G. Wang, D. B. Durand, M. Schoenberg, and Y. T. Pan, “Fluorescence guided optical coherence tomography for the diagnosis of early bladder cancer in a rat model,” J. Urol. 174(6), 2376–2381 (2005).
[Crossref]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Sefton, A. J.

K. R. Huxlin, A. J. Sefton, and J. H. Furby, “The origin and development of retinal astrocytes in the mouse,” J. Neurocytol. 21(7), 530–544 (1992).
[Crossref]

Shakhova, N. M.

R. V. Kuranov, V. V. Sapozhnikova, N. M. Shakhova, V. M. Gelikonov, E. V. Zagainova, and S. A. Petrova, “Combined application of optical methods to increase the information content of optical coherent tomography in diagnostics of neoplastic processes,” Quantum Electron. 32(11), 993–998 (2002).
[Crossref]

Shaner, N. C.

N. C. Shaner, R. E. Campbell, P. A. Steinbach, B. N. G. Giepmans, A. E. Palmer, and R. Y. Tsien, “Improved monomeric red, orange, and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein,” Nat. Biotechnol. 22(12), 1567–1572 (2004).
[Crossref]

Sherlock, B. E.

Shih, A. Y.

D. A. Hartmann, R. G. Underly, A. N. Watson, and A. Y. Shih, “A murine toolbox for imaging the neurovascular unit,” Microcirculation 22(3), 168–182 (2015).
[Crossref]

Shrestha, S.

Sison, M.

Smith, E. D. J.

So, K. F.

Q. Cui, H. K. Yip, R. C. Zhao, K. F. So, and A. R. Harvey, “Intraocular elevation of cyclic AMP potentiates ciliary neurotrophic factor-induced regeneration of adult rat retinal ganglion cell axons,” Mol. Cell. Neurosci. 22(1), 49–61 (2003).
[Crossref]

Sokolov, K.

A. Wax and K. Sokolov, “Molecular imaging and darkfield microspectroscopy of live cells using gold plasmonic nanoparticles,” Laser Photonics Rev. 3(1-2), 146–158 (2009).
[Crossref]

Son, S.

Son, T.

X. Yao, T. Son, T. Kim, and Y. Lu, “Functional optical coherence tomography of retinal photoreceptors,” Exp. Biol. Med. 243(17-18), 1256–1264 (2018).
[Crossref]

Srinivasan, V. J.

Steinbach, P. A.

N. C. Shaner, R. E. Campbell, P. A. Steinbach, B. N. G. Giepmans, A. E. Palmer, and R. Y. Tsien, “Improved monomeric red, orange, and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein,” Nat. Biotechnol. 22(12), 1567–1572 (2004).
[Crossref]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Summers, R. M.

S. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Xu, G. Griffiths, J. Jiang, H. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Phys. Med. Biol. 55(1), 191–206 (2010).
[Crossref]

Sun, C.

S. Liang, A. Saidi, J. Jing, G. Liu, J. Li, J. Zhang, C. Sun, J. Narula, and Z. Chen, “Intravascular atherosclerotic imaging with combined fluorescence and optical coherence tomography probe based on a double-clad fiber combiner,” J. Biomed. Opt. 17(7), 0705011 (2012).
[Crossref]

Sun, Y.

M. Vanlandewijck, L. He, M. A. Mäe, J. Andrae, K. Ando, F. D. Gaudio, K. Nahar, T. Lebouvier, B. Laviña, L. Gouveia, Y. Sun, E. Raschperger, M. Räsänen, Y. Zarb, N. Mochizuki, A. Keller, U. Lendahl, and C. Betsholtz, “A molecular atlas of cell types and zonation in the brain vasculature,” Nature 554(7693), 475–480 (2018).
[Crossref]

Suter, M. J.

B. E. Bouma, S. H. Yun, B. J. Vakoc, M. J. Suter, and G. J. Tearney, “Fourier-domain optical coherence tomography: recent advances toward clinical utility,” Curr. Opin. Biotechnol. 20(1), 111–118 (2009).
[Crossref]

Swanson, E. A.

S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22(5), 340–342 (1997).
[Crossref]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Szlag, D.

Tan, W.

C. Vinegoni, T. Ralston, W. Tan, W. Luo, D. L. Marks, and S. A. Boppart, “Integrated structural and functional optical imaging combining spectral-domain optical coherence and multiphoton microscopy,” Appl. Phys. Lett. 88(5), 053901 (2006).
[Crossref]

C. Xu, C. Vinegoni, T. S. Ralston, W. Luo, W. Tan, and S. A. Boppart, “Spectroscopic spectral-domain optical coherence microscopy,” Opt. Lett. 31(8), 1079–1081 (2006).
[Crossref]

Tankam, P.

Tearney, G. J.

Thompson, K. P.

Thouvenin, O.

O. Thouvenin, M. Fink, and C. Boccara, “Dynamic multimodal full-field optical coherence tomography and fluorescence structured illumination microscopy,” J. Biomed. Opt. 22(2), 026004 (2017).
[Crossref]

Topilko, P.

J. Ben Arous, J. Binding, J. F. Leger, M. Casado, P. Topilko, L. Bourdieu, S. Gigan, and A. C. Boccara, “Single myelin fiber imaging in living rodents without labeling by deep optical coherence microscopy,” J. Biomed. Opt. 16(11), 116012 (2011).
[Crossref]

Tsien, R. Y.

N. C. Shaner, R. E. Campbell, P. A. Steinbach, B. N. G. Giepmans, A. E. Palmer, and R. Y. Tsien, “Improved monomeric red, orange, and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein,” Nat. Biotechnol. 22(12), 1567–1572 (2004).
[Crossref]

Tumlinson, A. R.

Underly, R. G.

D. A. Hartmann, R. G. Underly, A. N. Watson, and A. Y. Shih, “A murine toolbox for imaging the neurovascular unit,” Microcirculation 22(3), 168–182 (2015).
[Crossref]

Utzinger, U.

Vakoc, B. J.

B. E. Bouma, S. H. Yun, B. J. Vakoc, M. J. Suter, and G. J. Tearney, “Fourier-domain optical coherence tomography: recent advances toward clinical utility,” Curr. Opin. Biotechnol. 20(1), 111–118 (2009).
[Crossref]

Vanlandewijck, M.

M. Vanlandewijck, L. He, M. A. Mäe, J. Andrae, K. Ando, F. D. Gaudio, K. Nahar, T. Lebouvier, B. Laviña, L. Gouveia, Y. Sun, E. Raschperger, M. Räsänen, Y. Zarb, N. Mochizuki, A. Keller, U. Lendahl, and C. Betsholtz, “A molecular atlas of cell types and zonation in the brain vasculature,” Nature 554(7693), 475–480 (2018).
[Crossref]

Villiger, M.

Vinegoni, C.

C. Xu, C. Vinegoni, T. S. Ralston, W. Luo, W. Tan, and S. A. Boppart, “Spectroscopic spectral-domain optical coherence microscopy,” Opt. Lett. 31(8), 1079–1081 (2006).
[Crossref]

C. Vinegoni, T. Ralston, W. Tan, W. Luo, D. L. Marks, and S. A. Boppart, “Integrated structural and functional optical imaging combining spectral-domain optical coherence and multiphoton microscopy,” Appl. Phys. Lett. 88(5), 053901 (2006).
[Crossref]

Wall, R. A.

Wan, Q.

Wang, H.

Wang, R.

Wang, T.

Wang, X.

P. Zhang, A. Zam, Y. Jian, X. Wang, Y. Li, K. S. Lam, M. E. Burns, M. V. Sarunic, E. N. Jr, P. Jr, and R. J. Zawadzki, “In vivo wide-field multispectral scanning laser ophthalmoscopy-optical coherence tomography mouse retinal imager: longitudinal imaging of ganglion cells, microglia, and Müller glia, and mapping of the mouse retinal and choroidal vasculature,” J. Biomed. Opt. 20(12), 126005 (2015).
[Crossref]

Wang, Z. G.

Z. G. Wang, D. B. Durand, M. Schoenberg, and Y. T. Pan, “Fluorescence guided optical coherence tomography for the diagnosis of early bladder cancer in a rat model,” J. Urol. 174(6), 2376–2381 (2005).
[Crossref]

Watson, A. N.

D. A. Hartmann, R. G. Underly, A. N. Watson, and A. Y. Shih, “A murine toolbox for imaging the neurovascular unit,” Microcirculation 22(3), 168–182 (2015).
[Crossref]

Wax, A.

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics 5(12), 744–747 (2011).
[Crossref]

A. Wax and K. Sokolov, “Molecular imaging and darkfield microspectroscopy of live cells using gold plasmonic nanoparticles,” Laser Photonics Rev. 3(1-2), 146–158 (2009).
[Crossref]

Wen, R.

Widhalm, G.

A. Lichtenegger, J. Gesperger, B. Kiesel, M. Muck, P. Eugui, D. J. Harper, M. Salas, M. Augustin, C. W. Merkle, C. K. Hitzenberger, G. Widhalm, A. Wöhrer, and B. Baumann, “Revealing brain pathologies with multimodal visible light optical coherence microscopy and fluorescence imaging,” J. Biomed. Opt. 24(06), 1 (2019).
[Crossref]

Wierwille, J.

S. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Xu, G. Griffiths, J. Jiang, H. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Phys. Med. Biol. 55(1), 191–206 (2010).
[Crossref]

Wieser, W.

Wilson, C.

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics 5(12), 744–747 (2011).
[Crossref]

Wöhrer, A.

A. Lichtenegger, J. Gesperger, B. Kiesel, M. Muck, P. Eugui, D. J. Harper, M. Salas, M. Augustin, C. W. Merkle, C. K. Hitzenberger, G. Widhalm, A. Wöhrer, and B. Baumann, “Revealing brain pathologies with multimodal visible light optical coherence microscopy and fluorescence imaging,” J. Biomed. Opt. 24(06), 1 (2019).
[Crossref]

Wojtkowski, M.

Wu, W.

M. A. Yaseen, V. J. Srinivasan, S. Sakadžić, H. Radhakrishnan, I. Gorczynska, W. Wu, J. G. Fujimoto, and D. A. Boas, “Microvascular oxygen tension and flow measurements in rodent cerebral cortex during baseline conditions and functional activation,” J. Cereb. Blood Flow Metab. 31(4), 1051–1063 (2011).
[Crossref]

Wurster, L. M.

Xi, J.

Xie, T. Q.

Xu, B.

S. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Xu, G. Griffiths, J. Jiang, H. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Phys. Med. Biol. 55(1), 191–206 (2010).
[Crossref]

Xu, C.

Yang, B.

Yang, C.

Yao, X.

X. Yao, T. Son, T. Kim, and Y. Lu, “Functional optical coherence tomography of retinal photoreceptors,” Exp. Biol. Med. 243(17-18), 1256–1264 (2018).
[Crossref]

Yaseen, M. A.

H. Wang, T. Akkin, C. Magnain, R. Wang, J. Dubb, W. J. Kostis, M. A. Yaseen, A. Cramer, S. Sakadžić, and D. Boas, “Polarization sensitive optical coherence microscopy for brain imaging,” Opt. Lett. 41(10), 2213–2216 (2016).
[Crossref]

M. A. Yaseen, V. J. Srinivasan, S. Sakadžić, H. Radhakrishnan, I. Gorczynska, W. Wu, J. G. Fujimoto, and D. A. Boas, “Microvascular oxygen tension and flow measurements in rodent cerebral cortex during baseline conditions and functional activation,” J. Cereb. Blood Flow Metab. 31(4), 1051–1063 (2011).
[Crossref]

Yau, K.

Y. Fu and K. Yau, “Phototransduction in mouse rods and cones,” Pfluegers Arch. 454(5), 805–819 (2007).
[Crossref]

Yeo, E. L. L.

Yip, H. K.

Q. Cui, H. K. Yip, R. C. Zhao, K. F. So, and A. R. Harvey, “Intraocular elevation of cyclic AMP potentiates ciliary neurotrophic factor-induced regeneration of adult rat retinal ganglion cell axons,” Mol. Cell. Neurosci. 22(1), 49–61 (2003).
[Crossref]

Yoon, S.

Yoon, Y.

Yuan, S.

S. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Xu, G. Griffiths, J. Jiang, H. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Phys. Med. Biol. 55(1), 191–206 (2010).
[Crossref]

Yun, S. H.

B. E. Bouma, S. H. Yun, B. J. Vakoc, M. J. Suter, and G. J. Tearney, “Fourier-domain optical coherence tomography: recent advances toward clinical utility,” Curr. Opin. Biotechnol. 20(1), 111–118 (2009).
[Crossref]

Zaepfel, M.

S. Kuchler-Bopp, J. P. Delaunoy, J. C. Artault, M. Zaepfel, and J. B. Dietrich, “Astrocytes induce several bold-brain barrier properties in non-neural endothelial cells,” NeuroReport 10(6), 1347–1353 (1999).
[Crossref]

Zagainova, E. V.

R. V. Kuranov, V. V. Sapozhnikova, N. M. Shakhova, V. M. Gelikonov, E. V. Zagainova, and S. A. Petrova, “Combined application of optical methods to increase the information content of optical coherent tomography in diagnostics of neoplastic processes,” Quantum Electron. 32(11), 993–998 (2002).
[Crossref]

Zam, A.

P. Zhang, A. Zam, Y. Jian, X. Wang, Y. Li, K. S. Lam, M. E. Burns, M. V. Sarunic, E. N. Jr, P. Jr, and R. J. Zawadzki, “In vivo wide-field multispectral scanning laser ophthalmoscopy-optical coherence tomography mouse retinal imager: longitudinal imaging of ganglion cells, microglia, and Müller glia, and mapping of the mouse retinal and choroidal vasculature,” J. Biomed. Opt. 20(12), 126005 (2015).
[Crossref]

Zarb, Y.

M. Vanlandewijck, L. He, M. A. Mäe, J. Andrae, K. Ando, F. D. Gaudio, K. Nahar, T. Lebouvier, B. Laviña, L. Gouveia, Y. Sun, E. Raschperger, M. Räsänen, Y. Zarb, N. Mochizuki, A. Keller, U. Lendahl, and C. Betsholtz, “A molecular atlas of cell types and zonation in the brain vasculature,” Nature 554(7693), 475–480 (2018).
[Crossref]

Zawadzki, R. J.

P. Zhang, A. Zam, Y. Jian, X. Wang, Y. Li, K. S. Lam, M. E. Burns, M. V. Sarunic, E. N. Jr, P. Jr, and R. J. Zawadzki, “In vivo wide-field multispectral scanning laser ophthalmoscopy-optical coherence tomography mouse retinal imager: longitudinal imaging of ganglion cells, microglia, and Müller glia, and mapping of the mouse retinal and choroidal vasculature,” J. Biomed. Opt. 20(12), 126005 (2015).
[Crossref]

Zeidel, M. L.

Zhang, J.

S. Liang, A. Saidi, J. Jing, G. Liu, J. Li, J. Zhang, C. Sun, J. Narula, and Z. Chen, “Intravascular atherosclerotic imaging with combined fluorescence and optical coherence tomography probe based on a double-clad fiber combiner,” J. Biomed. Opt. 17(7), 0705011 (2012).
[Crossref]

Zhang, P.

P. Zhang, A. Zam, Y. Jian, X. Wang, Y. Li, K. S. Lam, M. E. Burns, M. V. Sarunic, E. N. Jr, P. Jr, and R. J. Zawadzki, “In vivo wide-field multispectral scanning laser ophthalmoscopy-optical coherence tomography mouse retinal imager: longitudinal imaging of ganglion cells, microglia, and Müller glia, and mapping of the mouse retinal and choroidal vasculature,” J. Biomed. Opt. 20(12), 126005 (2015).
[Crossref]

K. Mehta, P. Zhang, E. L. L. Yeo, J. C. Y. Kah, and N. Chen, “Dark-field circular depolarization optical coherence microscopy,” Biomed. Opt. Express 4(9), 1683–1691 (2013).
[Crossref]

Zhang, Y.

Zhao, R. C.

Q. Cui, H. K. Yip, R. C. Zhao, K. F. So, and A. R. Harvey, “Intraocular elevation of cyclic AMP potentiates ciliary neurotrophic factor-induced regeneration of adult rat retinal ganglion cell axons,” Mol. Cell. Neurosci. 22(1), 49–61 (2003).
[Crossref]

Zvyagin, A. V.

Appl. Opt. (4)

Appl. Phys. Lett. (1)

C. Vinegoni, T. Ralston, W. Tan, W. Luo, D. L. Marks, and S. A. Boppart, “Integrated structural and functional optical imaging combining spectral-domain optical coherence and multiphoton microscopy,” Appl. Phys. Lett. 88(5), 053901 (2006).
[Crossref]

Biomed. Opt. Express (9)

J. Park, J. A. Jo, S. Shrestha, P. Pande, Q. Wan, and B. E. Applegate, “A dual-modality optical coherence tomography and fluorescence lifetime imaging microscopy system for simultaneous morphological and biochemical tissue characterization,” Biomed. Opt. Express 1(1), 186–200 (2010).
[Crossref]

R. A. Wall, G. T. Bonnema, and J. K. Barton, “Novel focused OCT-LIF endoscope,” Biomed. Opt. Express 2(3), 421–430 (2011).
[Crossref]

K. Mehta, P. Zhang, E. L. L. Yeo, J. C. Y. Kah, and N. Chen, “Dark-field circular depolarization optical coherence microscopy,” Biomed. Opt. Express 4(9), 1683–1691 (2013).
[Crossref]

C. Leahy, H. Radhakrishnan, and V. J. Srinivasan, “Volumetric imaging and quantification of cytoarchitecture and myeloarchitecture with intrinsic scattering contrast,” Biomed. Opt. Express 4(10), 1978–1990 (2013).
[Crossref]

E. Auksorius, Y. Bromberg, R. Motiejūnaitė, A. Pieretti, L. Liu, E. Coron, J. Aranda, A. M. Goldstein, B. E. Bouma, A. Kazlauskas, and G. J. Tearney, “Dual-modality fluorescence and full-field optical coherence microcopy for biomedical imaging applications,” Biomed. Opt. Express 3(3), 661–666 (2012).
[Crossref]

J. Mavadia, J. Xi, Y. Chen, and X. Li, “An all-fiber-optic endoscopy platform for simultaneous OCT and fluorescence imaging,” Biomed. Opt. Express 3(11), 2851–2859 (2012).
[Crossref]

Z. Nafar, M. Jiang, R. Wen, and S. Jiao, “Visible-light optical coherence tomography-based multimodal retinal imaging for improvement of fluorescent intensity quantification,” Biomed. Opt. Express 7(9), 3220–3229 (2016).
[Crossref]

J. F. de Boer, R. Leitgeb, and M. Wojtkowski, “Twenty-five years of optical coherence tomography: the paradigm shift in sensitivity and speed provided by Fourier domain OCT [Invited],” Biomed. Opt. Express 8(7), 3248–3280 (2017).
[Crossref]

P. J. Marchand, A. Bouwens, D. Szlag, D. Nguyen, A. Descloux, M. Sison, S. Coquoz, J. Extermann, and T. Lasser, “Visible spectrum extended-focus optical coherence microscopy for label-free sub-cellular tomography,” Biomed. Opt. Express 8(7), 3343–3359 (2017).
[Crossref]

Curr. Opin. Biotechnol. (1)

B. E. Bouma, S. H. Yun, B. J. Vakoc, M. J. Suter, and G. J. Tearney, “Fourier-domain optical coherence tomography: recent advances toward clinical utility,” Curr. Opin. Biotechnol. 20(1), 111–118 (2009).
[Crossref]

Eur. Phys. J. E: Soft Matter Biol. Phys. (1)

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E: Soft Matter Biol. Phys. 3(2), 159–163 (2000).
[Crossref]

Exp. Biol. Med. (1)

X. Yao, T. Son, T. Kim, and Y. Lu, “Functional optical coherence tomography of retinal photoreceptors,” Exp. Biol. Med. 243(17-18), 1256–1264 (2018).
[Crossref]

Invest. Ophthalmol. Visual Sci. (1)

J. M. Kwong, J. Caprioli, and N. Piri, “RNA binding protein with multiple splicing: a new marker for retinal ganglion cells,” Invest. Ophthalmol. Visual Sci. 51(2), 1052–1058 (2010).
[Crossref]

J. Biomed. Opt. (7)

J. Ben Arous, J. Binding, J. F. Leger, M. Casado, P. Topilko, L. Bourdieu, S. Gigan, and A. C. Boccara, “Single myelin fiber imaging in living rodents without labeling by deep optical coherence microscopy,” J. Biomed. Opt. 16(11), 116012 (2011).
[Crossref]

A. Lichtenegger, J. Gesperger, B. Kiesel, M. Muck, P. Eugui, D. J. Harper, M. Salas, M. Augustin, C. W. Merkle, C. K. Hitzenberger, G. Widhalm, A. Wöhrer, and B. Baumann, “Revealing brain pathologies with multimodal visible light optical coherence microscopy and fluorescence imaging,” J. Biomed. Opt. 24(06), 1 (2019).
[Crossref]

O. Thouvenin, M. Fink, and C. Boccara, “Dynamic multimodal full-field optical coherence tomography and fluorescence structured illumination microscopy,” J. Biomed. Opt. 22(2), 026004 (2017).
[Crossref]

M. Gärtner, P. Cimalla, S. Meissner, E. Koch, and W. M. Kübler, “Three-dimensional simultaneous optical coherence tomography and confocal fluorescence microscopy for investigation of lung tissue,” J. Biomed. Opt. 17(7), 071310 (2012).
[Crossref]

P. Zhang, A. Zam, Y. Jian, X. Wang, Y. Li, K. S. Lam, M. E. Burns, M. V. Sarunic, E. N. Jr, P. Jr, and R. J. Zawadzki, “In vivo wide-field multispectral scanning laser ophthalmoscopy-optical coherence tomography mouse retinal imager: longitudinal imaging of ganglion cells, microglia, and Müller glia, and mapping of the mouse retinal and choroidal vasculature,” J. Biomed. Opt. 20(12), 126005 (2015).
[Crossref]

S. Liang, A. Saidi, J. Jing, G. Liu, J. Li, J. Zhang, C. Sun, J. Narula, and Z. Chen, “Intravascular atherosclerotic imaging with combined fluorescence and optical coherence tomography probe based on a double-clad fiber combiner,” J. Biomed. Opt. 17(7), 0705011 (2012).
[Crossref]

J. K. Barton, F. Guzman, and A. R. Tumlinson, “Dual modality instrument for simultaneous optical coherence tomography imaging and fluorescence spectroscopy,” J. Biomed. Opt. 9(3), 618–624 (2004).
[Crossref]

J. Cereb. Blood Flow Metab. (2)

M. A. Yaseen, V. J. Srinivasan, S. Sakadžić, H. Radhakrishnan, I. Gorczynska, W. Wu, J. G. Fujimoto, and D. A. Boas, “Microvascular oxygen tension and flow measurements in rodent cerebral cortex during baseline conditions and functional activation,” J. Cereb. Blood Flow Metab. 31(4), 1051–1063 (2011).
[Crossref]

D. Attwell, A. Mishra, C. N. Hall, F. M. O’Farrell, and T. Dalkara, “What is a pericyte?” J. Cereb. Blood Flow Metab. 36(2), 451–455 (2016).
[Crossref]

J. Neurocytol. (1)

K. R. Huxlin, A. J. Sefton, and J. H. Furby, “The origin and development of retinal astrocytes in the mouse,” J. Neurocytol. 21(7), 530–544 (1992).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Urol. (1)

Z. G. Wang, D. B. Durand, M. Schoenberg, and Y. T. Pan, “Fluorescence guided optical coherence tomography for the diagnosis of early bladder cancer in a rat model,” J. Urol. 174(6), 2376–2381 (2005).
[Crossref]

Laser Photonics Rev. (1)

A. Wax and K. Sokolov, “Molecular imaging and darkfield microspectroscopy of live cells using gold plasmonic nanoparticles,” Laser Photonics Rev. 3(1-2), 146–158 (2009).
[Crossref]

Microcirculation (1)

D. A. Hartmann, R. G. Underly, A. N. Watson, and A. Y. Shih, “A murine toolbox for imaging the neurovascular unit,” Microcirculation 22(3), 168–182 (2015).
[Crossref]

Mol. Cell. Neurosci. (1)

Q. Cui, H. K. Yip, R. C. Zhao, K. F. So, and A. R. Harvey, “Intraocular elevation of cyclic AMP potentiates ciliary neurotrophic factor-induced regeneration of adult rat retinal ganglion cell axons,” Mol. Cell. Neurosci. 22(1), 49–61 (2003).
[Crossref]

Nat. Biotechnol. (1)

N. C. Shaner, R. E. Campbell, P. A. Steinbach, B. N. G. Giepmans, A. E. Palmer, and R. Y. Tsien, “Improved monomeric red, orange, and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein,” Nat. Biotechnol. 22(12), 1567–1572 (2004).
[Crossref]

Nat. Photonics (1)

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics 5(12), 744–747 (2011).
[Crossref]

Nature (1)

M. Vanlandewijck, L. He, M. A. Mäe, J. Andrae, K. Ando, F. D. Gaudio, K. Nahar, T. Lebouvier, B. Laviña, L. Gouveia, Y. Sun, E. Raschperger, M. Räsänen, Y. Zarb, N. Mochizuki, A. Keller, U. Lendahl, and C. Betsholtz, “A molecular atlas of cell types and zonation in the brain vasculature,” Nature 554(7693), 475–480 (2018).
[Crossref]

NeuroReport (1)

S. Kuchler-Bopp, J. P. Delaunoy, J. C. Artault, M. Zaepfel, and J. B. Dietrich, “Astrocytes induce several bold-brain barrier properties in non-neural endothelial cells,” NeuroReport 10(6), 1347–1353 (1999).
[Crossref]

Opt. Commun. (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[Crossref]

Opt. Express (9)

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
[Crossref]

M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).
[Crossref]

J. P. Rolland, P. Meemon, S. Murali, K. P. Thompson, and K. Lee, “Gabor-based fusion technique for optical coherence microscopy,” Opt. Express 18(4), 3632–3642 (2010).
[Crossref]

Y. Yoon, Q. Li, V. H. Le, W. Jang, T. Wang, B. Kim, S. Son, W. Chung, C. Joo, and K. Kim, “Dark-field polarization-sensitive optical coherence tomography,” Opt. Express 23(10), 12874–12886 (2015).
[Crossref]

C. Blatter, B. Grajciar, C. M. Eigenwilling, W. Wieser, B. R. Biedermann, R. Huber, and R. A. Leitgeb, “Extended focus high-speed swept source OCT with self-reconstructive illumination,” Opt. Express 19(13), 12141–12155 (2011).
[Crossref]

B. Jeong, B. Lee, M. Jang, H. Nam, S. Yoon, T. Wang, J. Doh, B. Yang, M. Jang, and K. Kim, “Combined two-photon microscopy and optical coherence tomography using individually optimized sources,” Opt. Express 19(14), 13089–13096 (2011).
[Crossref]

V. J. Srinivasan, H. Radhakrishnan, J. Y. Jiang, S. Barry, and A. E. Cable, “Optical coherence microscopy for deep tissue imaging of the cerebral cortex with intrinsic contrast,” Opt. Express 20(3), 2220–2239 (2012).
[Crossref]

K. Lee, K. P. Thompson, and J. P. Rolland, “Broadband astigmatism-corrected Czerny-Turner spectrometer,” Opt. Express 18(22), 23378–23384 (2010).
[Crossref]

A. Cogliati, C. Canavesi, A. Hayes, P. Tankam, V. F. Duma, A. Santhanam, K. P. Thompson, and J. P. Rolland, “MEMS-based handheld scanning probe with pre-shaped input signals for distortion-free images in Gabor-domain optical coherence microscopy,” Opt. Express 24(12), 13365–13374 (2016).
[Crossref]

Opt. Lett. (13)

D. Lorenser, B. C. Quirk, M. Auger, W. J. Madore, R. W. Kirk, N. Godbout, D. D. Sampson, C. Boudoux, and R. A. McLaughlin, “Dual-modality needle probe for combined fluorescence imaging and three-dimensional optical coherence tomography,” Opt. Lett. 38(3), 266–268 (2013).
[Crossref]

B. E. Sherlock, J. E. Phipps, J. Bec, and L. Marcu, “Simultaneous, label-free, multispectral fluorescence lifetime imaging and optical coherence tomography using a double-clad fiber,” Opt. Lett. 42(19), 3753–3756 (2017).
[Crossref]

J. Xi, Y. Chen, Y. Zhang, K. Murari, M. J. Li, and X. Li, “Integrated multimodal endomicroscopy platform for simultaneous en face optical coherence and two-photon fluorescence imaging,” Opt. Lett. 37(3), 362–364 (2012).
[Crossref]

H. Wang, T. Akkin, C. Magnain, R. Wang, J. Dubb, W. J. Kostis, M. A. Yaseen, A. Cramer, S. Sakadžić, and D. Boas, “Polarization sensitive optical coherence microscopy for brain imaging,” Opt. Lett. 41(10), 2213–2216 (2016).
[Crossref]

M. Villiger, C. Pache, and T. Lasser, “Dark-field optical coherence microscopy,” Opt. Lett. 35(20), 3489–3491 (2010).
[Crossref]

S. Murali, K. P. Thompson, and J. P. Rolland, “Three-dimensional adaptive microscopy using embedded liquid lens,” Opt. Lett. 34(2), 145–147 (2009).
[Crossref]

C. Xu, C. Vinegoni, T. S. Ralston, W. Luo, W. Tan, and S. A. Boppart, “Spectroscopic spectral-domain optical coherence microscopy,” Opt. Lett. 31(8), 1079–1081 (2006).
[Crossref]

Y. T. Pan, T. Q. Xie, C. W. Du, S. Bastacky, S. Meyers, and M. L. Zeidel, “Enhancing early bladder cancer detection with fluorescence-guided endoscopic optical coherent tomography,” Opt. Lett. 28(24), 2485–2487 (2003).
[Crossref]

U. Morgner, W. Drexler, F. X. Kärtner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett. 25(2), 111–113 (2000).
[Crossref]

S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22(5), 340–342 (1997).
[Crossref]

B. Golubovic, B. E. Bouma, G. J. Tearney, and J. G. Fujimoto, “Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr/sup 4+/:forsterite laser,” Opt. Lett. 22(22), 1704–1706 (1997).
[Crossref]

G. J. Tearney, B. E. Bouma, and J. G. Fujimoto, “High-speed phase- and group-delay scanning with a grating-based phase control delay line,” Opt. Lett. 22(23), 1811–1813 (1997).
[Crossref]

E. Beaurepaire, L. Moreaux, F. Amblard, and J. Mertz, “Combined scanning optical coherence and two-photon-excited fluorescence microscopy,” Opt. Lett. 24(14), 969–971 (1999).
[Crossref]

Optica (1)

Pfluegers Arch. (1)

Y. Fu and K. Yau, “Phototransduction in mouse rods and cones,” Pfluegers Arch. 454(5), 805–819 (2007).
[Crossref]

Phys. Med. Biol. (1)

S. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Xu, G. Griffiths, J. Jiang, H. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Phys. Med. Biol. 55(1), 191–206 (2010).
[Crossref]

Proc. SPIE (1)

R. J. McNichols, A. Gowda, B. A. Bell, R. M. Johnigan, K. H. Calhoun, and M. Motamedi, “Development of an endoscopic fluorescence image-guided OCT probe for oral cancer detection,” Proc. SPIE 4254, 23–30 (2001).
[Crossref]

Quantum Electron. (1)

R. V. Kuranov, V. V. Sapozhnikova, N. M. Shakhova, V. M. Gelikonov, E. V. Zagainova, and S. A. Petrova, “Combined application of optical methods to increase the information content of optical coherent tomography in diagnostics of neoplastic processes,” Quantum Electron. 32(11), 993–998 (2002).
[Crossref]

Sci. Rep. (1)

L. Duan, S. J. Pan, T. N. Sato, and G. Fong, “Retinal angiogenesis regulates astrocytic differentiation in neonatal mouse retinas by oxygen dependent mechanisms,” Sci. Rep. 7(1), 17608 (2017).
[Crossref]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Other (1)

W. Drexler and J. G. Fujimoto, Optical Coherence Tomography-Technology and Applications-2nd Ed. (Springer International Publishing, Switzerland, 2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. System layout of Fluo GD-OCM, a combination of GD-OCM and LSCFM.
Fig. 2.
Fig. 2. Efficiencies of the dichroic mirrors and emission filter used in Fluo GD-OCM. (a) The dichroic mirror #1 for combining/splitting the optical paths of the tdTomato-fluorescence (red) and excitation (green), (b) the emission filter for blocking the excitation beam and passing the fluorescence, and (c) the dichroic mirror #2 for combining/splitting the optical paths of the GD-OCM and LSCFM. The light source of the GD-OCM (blue) was D-840-HP-I, Superlum.
Fig. 3.
Fig. 3. A schematic of the imaging protocol: (a) when a 100-µm-thick brain slice is mounted on a glass slide and (b) when a <100-µm-thick retina is mounted on a glass slide and covered by a cover-slip.
Fig. 4.
Fig. 4. Transverse imaging resolutions of the Fluo GD-OCM system. The USAF resolution target was imaged with (a) common-path modified GD-OCM and (b) LSCFM. The smallest resolvable group is marked in a red box. (c) The overlay of (a) and (b) demonstrate synchronization and transverse registration.
Fig. 5.
Fig. 5. Longitudinal imaging resolution of Fluo GD-OCM. (a) The FWHMs of the axial PSFs over depth for the modified GD-OCM in common-path configuration (solid blue curve), the modified GD-OCM with the reference arm (solid black curve), and the original GD-OCM (solid red curve). The error bar is the standard deviation of the FWHM over ten measurements. (b) The optical sectioning capability of LSCFM was characterized by the FWHM of the through-focus intensity profile when a mirror was axially translated around the focus of the excitation beam (λEX=555-557 nm).
Fig. 6.
Fig. 6. The implementation of Fluo GD-OCM showed two different working distances for GD-OCM and LSCFM over the range of electrical voltages applied to refocus the liquid lens of the probe. The operating wavelength, λ [nm], was 790-890 for GD-OCM (red) and 555-557 for LSCFM (blue). The bar is the standard deviation of the working distance, and ΔD is the averaged difference in the working distances over ten measurements.
Fig. 7.
Fig. 7. Fluo GD-OCM images of a transgenic NG2-DsRed mouse brain slice. (a) An LSCFM image of the tissue showed several NG2-positive cells, confirmed by the DsRed fluorescence emission. NG2 was expressed by pericytes and vascular smooth muscle cells in the brain, and their cellular morphology allowed to differentiate segments of the vascular network: arterioles (yellow arrows), pre-capillary arterioles (green arrow), and capillaries (blue arrow) [56]. (b-c) Two GD-OCM en face images, taken at different depths separated by 30 µm, showing hyper-reflective strands of white matter surrounded by hypo-reflective gray matter. The hyper-reflective white matter corresponded to myelinated axon tracts that projected from the thalamus to cortex. (d-e) Overlays of the GD-OCM images in (b) and (c) with the LSCFM image in (a) showed that hypo-reflective spots corresponded to blood vessels that were drained during the perfusion-fixation process. The artifacts (e.g., the dark spots contained within the white oval dotted line in Fig. 7(b) and 7(c)) were caused by the difference in reflectivity of the reference beam deriving from non-uniform contact between the sample and the glass slide.
Fig. 8.
Fig. 8. Fluo GD-OCM images of a mouse RBPMS-Cy3 labeled retina. (a) An LSCFM image of the tissue showing several RBPM-positive RGCs, confirmed by the Cy3-fluorescence emission. (b-c) Two GD-OCM en face images taken at different depths, separated by 78 µm. The LSCFM and the two GD-OCM images displayed co-localization of the optic disc (green arrow) and alignment between the hyper-reflective strands shown as yellow arrows in (c) and the hypo-reflective trajectories in (a), which corresponded to retinal vasculature. The granular feature visible in (b) mostly corresponded to the rods.
Fig. 9.
Fig. 9. Fluo GD-OCM images of the mouse GFAP-Cy3 labeled retina. (a) An LSCFM image of the tissue showing several star-shaped GFAP-positive astrocytes whose end-feet wrap around the vasculature, confirmed by the Cy3-fluorescence emission. (b-c) Two GD-OCM en face images taken at different depths, separated by 84 µm. All images displayed co-localization of the optic disc (green arrow), and alignment between the hyper-reflective strands, shown as yellow arrows in (c), and the retinal vasculature in (a). The granular features shown in (b) mostly corresponded to the rods.
Fig. 10.
Fig. 10. Optimization of the optical focus in GD-OCM for imaging either covered- or uncovered-sample fixed on a glass slide with two imaging configurations: (a) without or (d) with a coverslip. The corresponding theoretical GD-OCM B-scans are illustrated in (b) and (e), respectively, which contain images of the glass interfaces (red line) and the sample (thickened white line). Varying the focal plane locations, two 100-µm- and 25-µm-thick mouse brain slices were imaged in the setup of (a) and (d), respectively, where tW=1 mm, tG=1 mm, and tc=160-190 µm. For the setups as shown in (a) and (d), the corresponding experimental A- and B-scans are shown in (c) and (f), respectively, within each region of interest (ROI).