Abstract

Raman spectroscopy has demonstrated great potential for skin wound assessment. Given that biochemical changes in wound healing is depth dependent as the skin is a layered structure, depth sensitive Raman spectroscopy could enhance the power of Raman spectroscopy in this application. Considering the critical importance of rodent studies in the field of skin wound assessment, it is necessary to develop and validate a system that can perform depth sensitive measurements in rat skin with a proper target depth range. In this manuscript, we report the design, optimization and evaluation of a new snapshot depth-sensitive Raman instrument for rat skin measurements. The optical design and optimization process are presented first. The depth sensitive measurement performance is characterized on both ex vivo porcine skin with a gradient of layer thickness and ex vivo rat skin samples with wounds. The statistical analysis of the measured Raman spectra demonstrates the feasibility of differentiation between the wound edge and healthy skin. Moreover, the accuracy of classification improves monotonically as more data from new depths are used, which implies that each depth offers additional information useful for classification. This instrument demonstrates the ability to perform snapshot depth sensitive Raman measurements from rat skin, which paves the way towards in vivo preclinical studies of rat skin wounds.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Snapshot depth sensitive Raman spectroscopy in layered tissues

Wei Liu, Yi Hong Ong, Xiao Jun Yu, Jian Ju, Clint Michael Perlaki, Lin Bo Liu, and Quan Liu
Opt. Express 24(25) 28312-28325 (2016)

Use of a multi-spectral camera in the characterization of skin wounds

Ali Basiri, Marjan Nabili, Scott Mathews, Alex Libin, Suzanne Groah, Herke J. Noordmans, and Jessica C. Ramella-Roman
Opt. Express 18(4) 3244-3257 (2010)

Raman active components of skin cancer

Xu Feng, Austin J Moy, Hieu T. M. Nguyen, Jason Zhang, Matthew C. Fox, Katherine R. Sebastian, Jason S. Reichenberg, Mia K. Markey, and James W. Tunnell
Biomed. Opt. Express 8(6) 2835-2850 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. J. Singer and R. A. Clark, “Cutaneous wound healing,” N. Engl. J. Med. 341(10), 738–746 (1999).
    [Crossref]
  2. P. Zhang, J. Lu, Y. Jing, S. Tang, D. Zhu, and Y. Bi, “Global epidemiology of diabetic foot ulceration: a systematic review and meta-analysis,” Ann. Med. (Abingdon, U. K.) 49(2), 106–116 (2017).
    [Crossref]
  3. A. Capon, N. Pavoni, A. Mastromattei, and D. Di Lallo, “Pressure ulcer risk in long-term units: prevalence and associated factors,” J Adv Nurs 58(3), 263–272 (2007).
    [Crossref]
  4. Netscribes, “Global Wound Care Product Market (2018-2023),” (researchandmarkets.com, 2018).
  5. D. R. Thomas, G. T. Rodeheaver, A. A. Bartolucci, R. A. Franz, C. Sussman, B. A. Ferrell, J. Cuddigan, N. A. Stotts, and J. Maklebust, “Pressure ulcer scale for healing: derivation and validation of the PUSH tool. The PUSH Task Force,” Advances in wound care: the journal for prevention and healing 10, 96–101 (1997).
  6. M. G. Woodbury, P. E. Houghton, K. E. Campbell, and D. H. Keast, “Development, validity, reliability, and responsiveness of a new leg ulcer measurement tool,” Advances in Skin & Wound Care 17(4), 187–196 (2004).
    [Crossref]
  7. G. S. Schultz, R. G. Sibbald, V. Falanga, E. A. Ayello, C. Dowsett, K. Harding, M. Romanelli, M. C. Stacey, L. Teot, and W. Vanscheidt, “Wound bed preparation: a systematic approach to wound management,” Wound Repair Regen. 11(s1), S1–S28 (2003).
    [Crossref]
  8. C. Dowsett, M. N. Gronemann, and K. Harding, “Taking wound assessment beyond the edge,” Wounds International 6, 19–23 (2015).
  9. R. J. Goldman and R. Salcido, “More than one way to measure a wound: an overview of tools and techniques,” Advances in skin & wound care 15(5), 236–243 (2002).
    [Crossref]
  10. K. G. Gürsu, “An experimental study for diagnosis of burn depth,” Burns 4(2), 97–103 (1977).
    [Crossref]
  11. R. Jain, D. Calderon, P. R. Kierski, M. J. Schurr, C. J. Czuprynski, C. J. Murphy, J. F. McAnulty, and N. L. Abbott, “Raman spectroscopy enables noninvasive biochemical characterization and identification of the stage of healing of a wound,” Anal. Chem. 86(8), 3764–3772 (2014).
    [Crossref]
  12. K. A. Chan, G. Zhang, M. Tomic-Canic, O. Stojadinovic, B. Lee, C. R. Flach, and R. Mendelsohn, “A coordinated approach to cutaneous wound healing: vibrational microscopy and molecular biology,” J. Cell. Mol. Med. 12(5b), 2145–2154 (2008).
    [Crossref]
  13. C. R. Flach, G. Zhang, and R. Mendelsohn, “Raman microscopy and imaging: applications to skin pharmacology and wound healing,” in Emerging Raman Applications and Techniques in Biomedical and Pharmaceutical Fields (Springer, 2010), pp. 365–384.
  14. A. Alimova, R. Chakraverty, R. Muthukattil, S. Elder, A. Katz, V. Sriramoju, S. Lipper, and R. Alfano, “In vivo molecular evaluation of guinea pig skin incisions healing after surgical suture and laser tissue welding using Raman spectroscopy,” J. Photochem. Photobiol., B 96(3), 178–183 (2009).
    [Crossref]
  15. W. Yan, H. Liu, X. Deng, Y. Jin, H. Sun, C. Li, N. Wang, and J. Chu, “Raman spectroscopy enables noninvasive biochemical identification of the collagen regeneration in cutaneous wound healing of diabetic mice treated with MSCs,” Lasers Med. Sci. 32(5), 1131–1141 (2017).
    [Crossref]
  16. G. C. Gurtner, S. Werner, Y. Barrandon, and M. T. Longaker, “Wound repair and regeneration,” Nature 453(7193), 314–321 (2008).
    [Crossref]
  17. P. Matousek, I. Clark, E. Draper, M. Morris, A. Goodship, N. Everall, M. Towrie, W. Finney, and A. Parker, “Subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy,” Appl. Spectrosc. 59(4), 393–400 (2005).
    [Crossref]
  18. M. D. Keller, E. Vargis, A. Mahadevan-Jansen, N. de Matos Granja, R. H. Wilson, M.-A. Mycek, and M. C. Kelley, “Development of a spatially offset Raman spectroscopy probe for breast tumor surgical margin evaluation,” J. Biomed. Opt. 16(7), 077006 (2011).
    [Crossref]
  19. R. J. Richters, D. Falcone, N. E. Uzunbajakava, B. Varghese, P. J. Caspers, G. J. Puppels, P. E. van Erp, and P. C. van de Kerkhof, “Sensitive skin: assessment of the skin barrier using confocal Raman microspectroscopy,” Skin Pharmacol. Physiol. 30(1), 1–12 (2017).
    [Crossref]
  20. P. J. Caspers, H. A. Bruining, G. J. Puppels, G. W. Lucassen, and E. A. Carter, “In vivo confocal Raman microspectroscopy of the skin: noninvasive determination of molecular concentration profiles,” J. Invest. Dermatol. 116(3), 434–442 (2001).
    [Crossref]
  21. W. Liu, Y. H. Ong, X. J. Yu, J. Ju, C. M. Perlaki, L. B. Liu, and Q. Liu, “Snapshot depth sensitive Raman spectroscopy in layered tissues,” Opt. Express 24(25), 28312–28325 (2016).
    [Crossref]
  22. Y. Lee and K. Hwang, “Skin thickness of Korean adults,” Surgical and Radiologic Anatomy 24(3-4), 183–189 (2002).
    [Crossref]
  23. S. M. Zaki, “Characteristics of the skin of the female albino rats in different ages: histological, morphometric and electron microscopic study,” J. Cytol. Histol. S3, 1 (2015).
    [Crossref]
  24. L. Chen, R. Mirza, Y. Kwon, L. A. DiPietro, and T. J. Koh, “The murine excisional wound model: contraction revisited,” Wound Repair Regen. 23(6), 874–877 (2015).
    [Crossref]
  25. H. D. Zomer and A. G. Trentin, “Skin wound healing in humans and mice: Challenges in translational research,” J. Dermatol. Sci. 90(1), 3–12 (2018).
    [Crossref]
  26. E. Botcherby, R. Juškaitis, and T. Wilson, “Scanning two photon fluorescence microscopy with extended depth of field,” Opt. Commun. 268(2), 253–260 (2006).
    [Crossref]
  27. W. T. Welford, “Use of annular apertures to increase focal depth,” J. Opt. Soc. Am. 50(8), 749–753 (1960).
    [Crossref]
  28. S. J. Choquette, E. S. Etz, W. S. Hurst, D. H. Blackburn, and S. D. Leigh, “Relative intensity correction of Raman spectrometers: NIST SRMs 2241 through 2243 for 785 nm, 532 nm, and 488 nm/514.5 nm excitation,” Appl. Spectrosc. 61(2), 117–129 (2007).
    [Crossref]
  29. C. A. Lieber and A. Mahadevan-Jansen, “Automated method for subtraction of fluorescence from biological Raman spectra,” Appl. Spectrosc. 57(11), 1363–1367 (2003).
    [Crossref]
  30. A. Savitzky and M. J. Golay, “Smoothing and differentiation of data by simplified least squares procedures,” Anal. Chem. 36(8), 1627–1639 (1964).
    [Crossref]
  31. J. U. Hjorth, Computer intensive statistical methods: Validation, model selection, and bootstrap (Routledge, 2017).
  32. M. Anguiano-Morales, M. M. Mendez-Otero, M. D. Iturbe-Castillo, and S. Chávez-Cerda, “Conical dynamics of Bessel beams,” Opt. Eng. 46(7), 078001 (2007).
    [Crossref]
  33. S. L. Thomsen, H. Vijverberg, R. Huang, and J. A. Schwartz, “Changes in optical properties of rat skin during thermal coagulation,” in Laser-Tissue Interaction IV, (International Society for Optics and Photonics, 1993), 230–237.
  34. U. Jacobi, M. Kaiser, R. Toll, S. Mangelsdorf, H. Audring, N. Otberg, W. Sterry, and J. Lademann, “Porcine ear skin: an in vitro model for human skin,” Skin Res. Technol. 13(1), 19–24 (2007).
    [Crossref]
  35. Y. H. Ong, M. Lim, and Q. Liu, “Comparison of principal component analysis and biochemical component analysis in Raman spectroscopy for the discrimination of apoptosis and necrosis in K562 leukemia cells,” Opt. Express 20(20), 22158–22171 (2012).
    [Crossref]
  36. J. R. Mourant, K. W. Short, S. Carpenter, N. Kunapareddy, L. Coburn, T. Powers, and J. P. Freyer, “Biochemical differences in tumorigenic and nontumorigenic cells measured by Raman and infrared spectroscopy,” J. Biomed. Opt. 10(3), 031106 (2005).
    [Crossref]
  37. T. Nguyen, C. Gobinet, J. Feru, S. B. Pasco, M. Manfait, and O. Piot, “Characterization of type I and IV collagens by Raman microspectroscopy: Identification of spectral markers of the dermo-epidermal junction,” Spectroscopy (N. Y., NY, U. S.) 27, 421–427 (2012).
    [Crossref]
  38. D. Lin-Vien, N. B. Colthup, W. G. Fateley, and J. G. Grasselli, The handbook of infrared and Raman characteristic frequencies of organic molecules (Elsevier, 1991).
  39. X. Feng, A. J. Moy, H. T. Nguyen, J. Zhang, M. C. Fox, K. R. Sebastian, J. S. Reichenberg, M. K. Markey, and J. W. Tunnell, “Raman active components of skin cancer,” Biomed. Opt. Express 8(6), 2835–2850 (2017).
    [Crossref]
  40. S. Chen, Y. H. Ong, X. Lin, and Q. Liu, “Optimization of advanced Wiener estimation methods for Raman reconstruction from narrow-band measurements in the presence of fluorescence background,” Biomed. Opt. Express 6(7), 2633–2648 (2015).
    [Crossref]
  41. J. Kang, X. Li, and Q. Liu, “Hadamard transform-based calibration method for programmable optical filters based on digital micro-mirror device,” Opt. Express 26(15), 19563–19573 (2018).
    [Crossref]

2018 (2)

H. D. Zomer and A. G. Trentin, “Skin wound healing in humans and mice: Challenges in translational research,” J. Dermatol. Sci. 90(1), 3–12 (2018).
[Crossref]

J. Kang, X. Li, and Q. Liu, “Hadamard transform-based calibration method for programmable optical filters based on digital micro-mirror device,” Opt. Express 26(15), 19563–19573 (2018).
[Crossref]

2017 (4)

X. Feng, A. J. Moy, H. T. Nguyen, J. Zhang, M. C. Fox, K. R. Sebastian, J. S. Reichenberg, M. K. Markey, and J. W. Tunnell, “Raman active components of skin cancer,” Biomed. Opt. Express 8(6), 2835–2850 (2017).
[Crossref]

P. Zhang, J. Lu, Y. Jing, S. Tang, D. Zhu, and Y. Bi, “Global epidemiology of diabetic foot ulceration: a systematic review and meta-analysis,” Ann. Med. (Abingdon, U. K.) 49(2), 106–116 (2017).
[Crossref]

W. Yan, H. Liu, X. Deng, Y. Jin, H. Sun, C. Li, N. Wang, and J. Chu, “Raman spectroscopy enables noninvasive biochemical identification of the collagen regeneration in cutaneous wound healing of diabetic mice treated with MSCs,” Lasers Med. Sci. 32(5), 1131–1141 (2017).
[Crossref]

R. J. Richters, D. Falcone, N. E. Uzunbajakava, B. Varghese, P. J. Caspers, G. J. Puppels, P. E. van Erp, and P. C. van de Kerkhof, “Sensitive skin: assessment of the skin barrier using confocal Raman microspectroscopy,” Skin Pharmacol. Physiol. 30(1), 1–12 (2017).
[Crossref]

2016 (1)

2015 (4)

C. Dowsett, M. N. Gronemann, and K. Harding, “Taking wound assessment beyond the edge,” Wounds International 6, 19–23 (2015).

S. Chen, Y. H. Ong, X. Lin, and Q. Liu, “Optimization of advanced Wiener estimation methods for Raman reconstruction from narrow-band measurements in the presence of fluorescence background,” Biomed. Opt. Express 6(7), 2633–2648 (2015).
[Crossref]

S. M. Zaki, “Characteristics of the skin of the female albino rats in different ages: histological, morphometric and electron microscopic study,” J. Cytol. Histol. S3, 1 (2015).
[Crossref]

L. Chen, R. Mirza, Y. Kwon, L. A. DiPietro, and T. J. Koh, “The murine excisional wound model: contraction revisited,” Wound Repair Regen. 23(6), 874–877 (2015).
[Crossref]

2014 (1)

R. Jain, D. Calderon, P. R. Kierski, M. J. Schurr, C. J. Czuprynski, C. J. Murphy, J. F. McAnulty, and N. L. Abbott, “Raman spectroscopy enables noninvasive biochemical characterization and identification of the stage of healing of a wound,” Anal. Chem. 86(8), 3764–3772 (2014).
[Crossref]

2012 (2)

Y. H. Ong, M. Lim, and Q. Liu, “Comparison of principal component analysis and biochemical component analysis in Raman spectroscopy for the discrimination of apoptosis and necrosis in K562 leukemia cells,” Opt. Express 20(20), 22158–22171 (2012).
[Crossref]

T. Nguyen, C. Gobinet, J. Feru, S. B. Pasco, M. Manfait, and O. Piot, “Characterization of type I and IV collagens by Raman microspectroscopy: Identification of spectral markers of the dermo-epidermal junction,” Spectroscopy (N. Y., NY, U. S.) 27, 421–427 (2012).
[Crossref]

2011 (1)

M. D. Keller, E. Vargis, A. Mahadevan-Jansen, N. de Matos Granja, R. H. Wilson, M.-A. Mycek, and M. C. Kelley, “Development of a spatially offset Raman spectroscopy probe for breast tumor surgical margin evaluation,” J. Biomed. Opt. 16(7), 077006 (2011).
[Crossref]

2009 (1)

A. Alimova, R. Chakraverty, R. Muthukattil, S. Elder, A. Katz, V. Sriramoju, S. Lipper, and R. Alfano, “In vivo molecular evaluation of guinea pig skin incisions healing after surgical suture and laser tissue welding using Raman spectroscopy,” J. Photochem. Photobiol., B 96(3), 178–183 (2009).
[Crossref]

2008 (2)

G. C. Gurtner, S. Werner, Y. Barrandon, and M. T. Longaker, “Wound repair and regeneration,” Nature 453(7193), 314–321 (2008).
[Crossref]

K. A. Chan, G. Zhang, M. Tomic-Canic, O. Stojadinovic, B. Lee, C. R. Flach, and R. Mendelsohn, “A coordinated approach to cutaneous wound healing: vibrational microscopy and molecular biology,” J. Cell. Mol. Med. 12(5b), 2145–2154 (2008).
[Crossref]

2007 (4)

A. Capon, N. Pavoni, A. Mastromattei, and D. Di Lallo, “Pressure ulcer risk in long-term units: prevalence and associated factors,” J Adv Nurs 58(3), 263–272 (2007).
[Crossref]

S. J. Choquette, E. S. Etz, W. S. Hurst, D. H. Blackburn, and S. D. Leigh, “Relative intensity correction of Raman spectrometers: NIST SRMs 2241 through 2243 for 785 nm, 532 nm, and 488 nm/514.5 nm excitation,” Appl. Spectrosc. 61(2), 117–129 (2007).
[Crossref]

M. Anguiano-Morales, M. M. Mendez-Otero, M. D. Iturbe-Castillo, and S. Chávez-Cerda, “Conical dynamics of Bessel beams,” Opt. Eng. 46(7), 078001 (2007).
[Crossref]

U. Jacobi, M. Kaiser, R. Toll, S. Mangelsdorf, H. Audring, N. Otberg, W. Sterry, and J. Lademann, “Porcine ear skin: an in vitro model for human skin,” Skin Res. Technol. 13(1), 19–24 (2007).
[Crossref]

2006 (1)

E. Botcherby, R. Juškaitis, and T. Wilson, “Scanning two photon fluorescence microscopy with extended depth of field,” Opt. Commun. 268(2), 253–260 (2006).
[Crossref]

2005 (2)

J. R. Mourant, K. W. Short, S. Carpenter, N. Kunapareddy, L. Coburn, T. Powers, and J. P. Freyer, “Biochemical differences in tumorigenic and nontumorigenic cells measured by Raman and infrared spectroscopy,” J. Biomed. Opt. 10(3), 031106 (2005).
[Crossref]

P. Matousek, I. Clark, E. Draper, M. Morris, A. Goodship, N. Everall, M. Towrie, W. Finney, and A. Parker, “Subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy,” Appl. Spectrosc. 59(4), 393–400 (2005).
[Crossref]

2004 (1)

M. G. Woodbury, P. E. Houghton, K. E. Campbell, and D. H. Keast, “Development, validity, reliability, and responsiveness of a new leg ulcer measurement tool,” Advances in Skin & Wound Care 17(4), 187–196 (2004).
[Crossref]

2003 (2)

G. S. Schultz, R. G. Sibbald, V. Falanga, E. A. Ayello, C. Dowsett, K. Harding, M. Romanelli, M. C. Stacey, L. Teot, and W. Vanscheidt, “Wound bed preparation: a systematic approach to wound management,” Wound Repair Regen. 11(s1), S1–S28 (2003).
[Crossref]

C. A. Lieber and A. Mahadevan-Jansen, “Automated method for subtraction of fluorescence from biological Raman spectra,” Appl. Spectrosc. 57(11), 1363–1367 (2003).
[Crossref]

2002 (2)

R. J. Goldman and R. Salcido, “More than one way to measure a wound: an overview of tools and techniques,” Advances in skin & wound care 15(5), 236–243 (2002).
[Crossref]

Y. Lee and K. Hwang, “Skin thickness of Korean adults,” Surgical and Radiologic Anatomy 24(3-4), 183–189 (2002).
[Crossref]

2001 (1)

P. J. Caspers, H. A. Bruining, G. J. Puppels, G. W. Lucassen, and E. A. Carter, “In vivo confocal Raman microspectroscopy of the skin: noninvasive determination of molecular concentration profiles,” J. Invest. Dermatol. 116(3), 434–442 (2001).
[Crossref]

1999 (1)

A. J. Singer and R. A. Clark, “Cutaneous wound healing,” N. Engl. J. Med. 341(10), 738–746 (1999).
[Crossref]

1997 (1)

D. R. Thomas, G. T. Rodeheaver, A. A. Bartolucci, R. A. Franz, C. Sussman, B. A. Ferrell, J. Cuddigan, N. A. Stotts, and J. Maklebust, “Pressure ulcer scale for healing: derivation and validation of the PUSH tool. The PUSH Task Force,” Advances in wound care: the journal for prevention and healing 10, 96–101 (1997).

1977 (1)

K. G. Gürsu, “An experimental study for diagnosis of burn depth,” Burns 4(2), 97–103 (1977).
[Crossref]

1964 (1)

A. Savitzky and M. J. Golay, “Smoothing and differentiation of data by simplified least squares procedures,” Anal. Chem. 36(8), 1627–1639 (1964).
[Crossref]

1960 (1)

Abbott, N. L.

R. Jain, D. Calderon, P. R. Kierski, M. J. Schurr, C. J. Czuprynski, C. J. Murphy, J. F. McAnulty, and N. L. Abbott, “Raman spectroscopy enables noninvasive biochemical characterization and identification of the stage of healing of a wound,” Anal. Chem. 86(8), 3764–3772 (2014).
[Crossref]

Alfano, R.

A. Alimova, R. Chakraverty, R. Muthukattil, S. Elder, A. Katz, V. Sriramoju, S. Lipper, and R. Alfano, “In vivo molecular evaluation of guinea pig skin incisions healing after surgical suture and laser tissue welding using Raman spectroscopy,” J. Photochem. Photobiol., B 96(3), 178–183 (2009).
[Crossref]

Alimova, A.

A. Alimova, R. Chakraverty, R. Muthukattil, S. Elder, A. Katz, V. Sriramoju, S. Lipper, and R. Alfano, “In vivo molecular evaluation of guinea pig skin incisions healing after surgical suture and laser tissue welding using Raman spectroscopy,” J. Photochem. Photobiol., B 96(3), 178–183 (2009).
[Crossref]

Anguiano-Morales, M.

M. Anguiano-Morales, M. M. Mendez-Otero, M. D. Iturbe-Castillo, and S. Chávez-Cerda, “Conical dynamics of Bessel beams,” Opt. Eng. 46(7), 078001 (2007).
[Crossref]

Audring, H.

U. Jacobi, M. Kaiser, R. Toll, S. Mangelsdorf, H. Audring, N. Otberg, W. Sterry, and J. Lademann, “Porcine ear skin: an in vitro model for human skin,” Skin Res. Technol. 13(1), 19–24 (2007).
[Crossref]

Ayello, E. A.

G. S. Schultz, R. G. Sibbald, V. Falanga, E. A. Ayello, C. Dowsett, K. Harding, M. Romanelli, M. C. Stacey, L. Teot, and W. Vanscheidt, “Wound bed preparation: a systematic approach to wound management,” Wound Repair Regen. 11(s1), S1–S28 (2003).
[Crossref]

Barrandon, Y.

G. C. Gurtner, S. Werner, Y. Barrandon, and M. T. Longaker, “Wound repair and regeneration,” Nature 453(7193), 314–321 (2008).
[Crossref]

Bartolucci, A. A.

D. R. Thomas, G. T. Rodeheaver, A. A. Bartolucci, R. A. Franz, C. Sussman, B. A. Ferrell, J. Cuddigan, N. A. Stotts, and J. Maklebust, “Pressure ulcer scale for healing: derivation and validation of the PUSH tool. The PUSH Task Force,” Advances in wound care: the journal for prevention and healing 10, 96–101 (1997).

Bi, Y.

P. Zhang, J. Lu, Y. Jing, S. Tang, D. Zhu, and Y. Bi, “Global epidemiology of diabetic foot ulceration: a systematic review and meta-analysis,” Ann. Med. (Abingdon, U. K.) 49(2), 106–116 (2017).
[Crossref]

Blackburn, D. H.

Botcherby, E.

E. Botcherby, R. Juškaitis, and T. Wilson, “Scanning two photon fluorescence microscopy with extended depth of field,” Opt. Commun. 268(2), 253–260 (2006).
[Crossref]

Bruining, H. A.

P. J. Caspers, H. A. Bruining, G. J. Puppels, G. W. Lucassen, and E. A. Carter, “In vivo confocal Raman microspectroscopy of the skin: noninvasive determination of molecular concentration profiles,” J. Invest. Dermatol. 116(3), 434–442 (2001).
[Crossref]

Calderon, D.

R. Jain, D. Calderon, P. R. Kierski, M. J. Schurr, C. J. Czuprynski, C. J. Murphy, J. F. McAnulty, and N. L. Abbott, “Raman spectroscopy enables noninvasive biochemical characterization and identification of the stage of healing of a wound,” Anal. Chem. 86(8), 3764–3772 (2014).
[Crossref]

Campbell, K. E.

M. G. Woodbury, P. E. Houghton, K. E. Campbell, and D. H. Keast, “Development, validity, reliability, and responsiveness of a new leg ulcer measurement tool,” Advances in Skin & Wound Care 17(4), 187–196 (2004).
[Crossref]

Capon, A.

A. Capon, N. Pavoni, A. Mastromattei, and D. Di Lallo, “Pressure ulcer risk in long-term units: prevalence and associated factors,” J Adv Nurs 58(3), 263–272 (2007).
[Crossref]

Carpenter, S.

J. R. Mourant, K. W. Short, S. Carpenter, N. Kunapareddy, L. Coburn, T. Powers, and J. P. Freyer, “Biochemical differences in tumorigenic and nontumorigenic cells measured by Raman and infrared spectroscopy,” J. Biomed. Opt. 10(3), 031106 (2005).
[Crossref]

Carter, E. A.

P. J. Caspers, H. A. Bruining, G. J. Puppels, G. W. Lucassen, and E. A. Carter, “In vivo confocal Raman microspectroscopy of the skin: noninvasive determination of molecular concentration profiles,” J. Invest. Dermatol. 116(3), 434–442 (2001).
[Crossref]

Caspers, P. J.

R. J. Richters, D. Falcone, N. E. Uzunbajakava, B. Varghese, P. J. Caspers, G. J. Puppels, P. E. van Erp, and P. C. van de Kerkhof, “Sensitive skin: assessment of the skin barrier using confocal Raman microspectroscopy,” Skin Pharmacol. Physiol. 30(1), 1–12 (2017).
[Crossref]

P. J. Caspers, H. A. Bruining, G. J. Puppels, G. W. Lucassen, and E. A. Carter, “In vivo confocal Raman microspectroscopy of the skin: noninvasive determination of molecular concentration profiles,” J. Invest. Dermatol. 116(3), 434–442 (2001).
[Crossref]

Chakraverty, R.

A. Alimova, R. Chakraverty, R. Muthukattil, S. Elder, A. Katz, V. Sriramoju, S. Lipper, and R. Alfano, “In vivo molecular evaluation of guinea pig skin incisions healing after surgical suture and laser tissue welding using Raman spectroscopy,” J. Photochem. Photobiol., B 96(3), 178–183 (2009).
[Crossref]

Chan, K. A.

K. A. Chan, G. Zhang, M. Tomic-Canic, O. Stojadinovic, B. Lee, C. R. Flach, and R. Mendelsohn, “A coordinated approach to cutaneous wound healing: vibrational microscopy and molecular biology,” J. Cell. Mol. Med. 12(5b), 2145–2154 (2008).
[Crossref]

Chávez-Cerda, S.

M. Anguiano-Morales, M. M. Mendez-Otero, M. D. Iturbe-Castillo, and S. Chávez-Cerda, “Conical dynamics of Bessel beams,” Opt. Eng. 46(7), 078001 (2007).
[Crossref]

Chen, L.

L. Chen, R. Mirza, Y. Kwon, L. A. DiPietro, and T. J. Koh, “The murine excisional wound model: contraction revisited,” Wound Repair Regen. 23(6), 874–877 (2015).
[Crossref]

Chen, S.

Choquette, S. J.

Chu, J.

W. Yan, H. Liu, X. Deng, Y. Jin, H. Sun, C. Li, N. Wang, and J. Chu, “Raman spectroscopy enables noninvasive biochemical identification of the collagen regeneration in cutaneous wound healing of diabetic mice treated with MSCs,” Lasers Med. Sci. 32(5), 1131–1141 (2017).
[Crossref]

Clark, I.

Clark, R. A.

A. J. Singer and R. A. Clark, “Cutaneous wound healing,” N. Engl. J. Med. 341(10), 738–746 (1999).
[Crossref]

Coburn, L.

J. R. Mourant, K. W. Short, S. Carpenter, N. Kunapareddy, L. Coburn, T. Powers, and J. P. Freyer, “Biochemical differences in tumorigenic and nontumorigenic cells measured by Raman and infrared spectroscopy,” J. Biomed. Opt. 10(3), 031106 (2005).
[Crossref]

Colthup, N. B.

D. Lin-Vien, N. B. Colthup, W. G. Fateley, and J. G. Grasselli, The handbook of infrared and Raman characteristic frequencies of organic molecules (Elsevier, 1991).

Cuddigan, J.

D. R. Thomas, G. T. Rodeheaver, A. A. Bartolucci, R. A. Franz, C. Sussman, B. A. Ferrell, J. Cuddigan, N. A. Stotts, and J. Maklebust, “Pressure ulcer scale for healing: derivation and validation of the PUSH tool. The PUSH Task Force,” Advances in wound care: the journal for prevention and healing 10, 96–101 (1997).

Czuprynski, C. J.

R. Jain, D. Calderon, P. R. Kierski, M. J. Schurr, C. J. Czuprynski, C. J. Murphy, J. F. McAnulty, and N. L. Abbott, “Raman spectroscopy enables noninvasive biochemical characterization and identification of the stage of healing of a wound,” Anal. Chem. 86(8), 3764–3772 (2014).
[Crossref]

de Matos Granja, N.

M. D. Keller, E. Vargis, A. Mahadevan-Jansen, N. de Matos Granja, R. H. Wilson, M.-A. Mycek, and M. C. Kelley, “Development of a spatially offset Raman spectroscopy probe for breast tumor surgical margin evaluation,” J. Biomed. Opt. 16(7), 077006 (2011).
[Crossref]

Deng, X.

W. Yan, H. Liu, X. Deng, Y. Jin, H. Sun, C. Li, N. Wang, and J. Chu, “Raman spectroscopy enables noninvasive biochemical identification of the collagen regeneration in cutaneous wound healing of diabetic mice treated with MSCs,” Lasers Med. Sci. 32(5), 1131–1141 (2017).
[Crossref]

Di Lallo, D.

A. Capon, N. Pavoni, A. Mastromattei, and D. Di Lallo, “Pressure ulcer risk in long-term units: prevalence and associated factors,” J Adv Nurs 58(3), 263–272 (2007).
[Crossref]

DiPietro, L. A.

L. Chen, R. Mirza, Y. Kwon, L. A. DiPietro, and T. J. Koh, “The murine excisional wound model: contraction revisited,” Wound Repair Regen. 23(6), 874–877 (2015).
[Crossref]

Dowsett, C.

C. Dowsett, M. N. Gronemann, and K. Harding, “Taking wound assessment beyond the edge,” Wounds International 6, 19–23 (2015).

G. S. Schultz, R. G. Sibbald, V. Falanga, E. A. Ayello, C. Dowsett, K. Harding, M. Romanelli, M. C. Stacey, L. Teot, and W. Vanscheidt, “Wound bed preparation: a systematic approach to wound management,” Wound Repair Regen. 11(s1), S1–S28 (2003).
[Crossref]

Draper, E.

Elder, S.

A. Alimova, R. Chakraverty, R. Muthukattil, S. Elder, A. Katz, V. Sriramoju, S. Lipper, and R. Alfano, “In vivo molecular evaluation of guinea pig skin incisions healing after surgical suture and laser tissue welding using Raman spectroscopy,” J. Photochem. Photobiol., B 96(3), 178–183 (2009).
[Crossref]

Etz, E. S.

Everall, N.

Falanga, V.

G. S. Schultz, R. G. Sibbald, V. Falanga, E. A. Ayello, C. Dowsett, K. Harding, M. Romanelli, M. C. Stacey, L. Teot, and W. Vanscheidt, “Wound bed preparation: a systematic approach to wound management,” Wound Repair Regen. 11(s1), S1–S28 (2003).
[Crossref]

Falcone, D.

R. J. Richters, D. Falcone, N. E. Uzunbajakava, B. Varghese, P. J. Caspers, G. J. Puppels, P. E. van Erp, and P. C. van de Kerkhof, “Sensitive skin: assessment of the skin barrier using confocal Raman microspectroscopy,” Skin Pharmacol. Physiol. 30(1), 1–12 (2017).
[Crossref]

Fateley, W. G.

D. Lin-Vien, N. B. Colthup, W. G. Fateley, and J. G. Grasselli, The handbook of infrared and Raman characteristic frequencies of organic molecules (Elsevier, 1991).

Feng, X.

Ferrell, B. A.

D. R. Thomas, G. T. Rodeheaver, A. A. Bartolucci, R. A. Franz, C. Sussman, B. A. Ferrell, J. Cuddigan, N. A. Stotts, and J. Maklebust, “Pressure ulcer scale for healing: derivation and validation of the PUSH tool. The PUSH Task Force,” Advances in wound care: the journal for prevention and healing 10, 96–101 (1997).

Feru, J.

T. Nguyen, C. Gobinet, J. Feru, S. B. Pasco, M. Manfait, and O. Piot, “Characterization of type I and IV collagens by Raman microspectroscopy: Identification of spectral markers of the dermo-epidermal junction,” Spectroscopy (N. Y., NY, U. S.) 27, 421–427 (2012).
[Crossref]

Finney, W.

Flach, C. R.

K. A. Chan, G. Zhang, M. Tomic-Canic, O. Stojadinovic, B. Lee, C. R. Flach, and R. Mendelsohn, “A coordinated approach to cutaneous wound healing: vibrational microscopy and molecular biology,” J. Cell. Mol. Med. 12(5b), 2145–2154 (2008).
[Crossref]

C. R. Flach, G. Zhang, and R. Mendelsohn, “Raman microscopy and imaging: applications to skin pharmacology and wound healing,” in Emerging Raman Applications and Techniques in Biomedical and Pharmaceutical Fields (Springer, 2010), pp. 365–384.

Fox, M. C.

Franz, R. A.

D. R. Thomas, G. T. Rodeheaver, A. A. Bartolucci, R. A. Franz, C. Sussman, B. A. Ferrell, J. Cuddigan, N. A. Stotts, and J. Maklebust, “Pressure ulcer scale for healing: derivation and validation of the PUSH tool. The PUSH Task Force,” Advances in wound care: the journal for prevention and healing 10, 96–101 (1997).

Freyer, J. P.

J. R. Mourant, K. W. Short, S. Carpenter, N. Kunapareddy, L. Coburn, T. Powers, and J. P. Freyer, “Biochemical differences in tumorigenic and nontumorigenic cells measured by Raman and infrared spectroscopy,” J. Biomed. Opt. 10(3), 031106 (2005).
[Crossref]

Gobinet, C.

T. Nguyen, C. Gobinet, J. Feru, S. B. Pasco, M. Manfait, and O. Piot, “Characterization of type I and IV collagens by Raman microspectroscopy: Identification of spectral markers of the dermo-epidermal junction,” Spectroscopy (N. Y., NY, U. S.) 27, 421–427 (2012).
[Crossref]

Golay, M. J.

A. Savitzky and M. J. Golay, “Smoothing and differentiation of data by simplified least squares procedures,” Anal. Chem. 36(8), 1627–1639 (1964).
[Crossref]

Goldman, R. J.

R. J. Goldman and R. Salcido, “More than one way to measure a wound: an overview of tools and techniques,” Advances in skin & wound care 15(5), 236–243 (2002).
[Crossref]

Goodship, A.

Grasselli, J. G.

D. Lin-Vien, N. B. Colthup, W. G. Fateley, and J. G. Grasselli, The handbook of infrared and Raman characteristic frequencies of organic molecules (Elsevier, 1991).

Gronemann, M. N.

C. Dowsett, M. N. Gronemann, and K. Harding, “Taking wound assessment beyond the edge,” Wounds International 6, 19–23 (2015).

Gürsu, K. G.

K. G. Gürsu, “An experimental study for diagnosis of burn depth,” Burns 4(2), 97–103 (1977).
[Crossref]

Gurtner, G. C.

G. C. Gurtner, S. Werner, Y. Barrandon, and M. T. Longaker, “Wound repair and regeneration,” Nature 453(7193), 314–321 (2008).
[Crossref]

Harding, K.

C. Dowsett, M. N. Gronemann, and K. Harding, “Taking wound assessment beyond the edge,” Wounds International 6, 19–23 (2015).

G. S. Schultz, R. G. Sibbald, V. Falanga, E. A. Ayello, C. Dowsett, K. Harding, M. Romanelli, M. C. Stacey, L. Teot, and W. Vanscheidt, “Wound bed preparation: a systematic approach to wound management,” Wound Repair Regen. 11(s1), S1–S28 (2003).
[Crossref]

Hjorth, J. U.

J. U. Hjorth, Computer intensive statistical methods: Validation, model selection, and bootstrap (Routledge, 2017).

Houghton, P. E.

M. G. Woodbury, P. E. Houghton, K. E. Campbell, and D. H. Keast, “Development, validity, reliability, and responsiveness of a new leg ulcer measurement tool,” Advances in Skin & Wound Care 17(4), 187–196 (2004).
[Crossref]

Huang, R.

S. L. Thomsen, H. Vijverberg, R. Huang, and J. A. Schwartz, “Changes in optical properties of rat skin during thermal coagulation,” in Laser-Tissue Interaction IV, (International Society for Optics and Photonics, 1993), 230–237.

Hurst, W. S.

Hwang, K.

Y. Lee and K. Hwang, “Skin thickness of Korean adults,” Surgical and Radiologic Anatomy 24(3-4), 183–189 (2002).
[Crossref]

Iturbe-Castillo, M. D.

M. Anguiano-Morales, M. M. Mendez-Otero, M. D. Iturbe-Castillo, and S. Chávez-Cerda, “Conical dynamics of Bessel beams,” Opt. Eng. 46(7), 078001 (2007).
[Crossref]

Jacobi, U.

U. Jacobi, M. Kaiser, R. Toll, S. Mangelsdorf, H. Audring, N. Otberg, W. Sterry, and J. Lademann, “Porcine ear skin: an in vitro model for human skin,” Skin Res. Technol. 13(1), 19–24 (2007).
[Crossref]

Jain, R.

R. Jain, D. Calderon, P. R. Kierski, M. J. Schurr, C. J. Czuprynski, C. J. Murphy, J. F. McAnulty, and N. L. Abbott, “Raman spectroscopy enables noninvasive biochemical characterization and identification of the stage of healing of a wound,” Anal. Chem. 86(8), 3764–3772 (2014).
[Crossref]

Jin, Y.

W. Yan, H. Liu, X. Deng, Y. Jin, H. Sun, C. Li, N. Wang, and J. Chu, “Raman spectroscopy enables noninvasive biochemical identification of the collagen regeneration in cutaneous wound healing of diabetic mice treated with MSCs,” Lasers Med. Sci. 32(5), 1131–1141 (2017).
[Crossref]

Jing, Y.

P. Zhang, J. Lu, Y. Jing, S. Tang, D. Zhu, and Y. Bi, “Global epidemiology of diabetic foot ulceration: a systematic review and meta-analysis,” Ann. Med. (Abingdon, U. K.) 49(2), 106–116 (2017).
[Crossref]

Ju, J.

Juškaitis, R.

E. Botcherby, R. Juškaitis, and T. Wilson, “Scanning two photon fluorescence microscopy with extended depth of field,” Opt. Commun. 268(2), 253–260 (2006).
[Crossref]

Kaiser, M.

U. Jacobi, M. Kaiser, R. Toll, S. Mangelsdorf, H. Audring, N. Otberg, W. Sterry, and J. Lademann, “Porcine ear skin: an in vitro model for human skin,” Skin Res. Technol. 13(1), 19–24 (2007).
[Crossref]

Kang, J.

Katz, A.

A. Alimova, R. Chakraverty, R. Muthukattil, S. Elder, A. Katz, V. Sriramoju, S. Lipper, and R. Alfano, “In vivo molecular evaluation of guinea pig skin incisions healing after surgical suture and laser tissue welding using Raman spectroscopy,” J. Photochem. Photobiol., B 96(3), 178–183 (2009).
[Crossref]

Keast, D. H.

M. G. Woodbury, P. E. Houghton, K. E. Campbell, and D. H. Keast, “Development, validity, reliability, and responsiveness of a new leg ulcer measurement tool,” Advances in Skin & Wound Care 17(4), 187–196 (2004).
[Crossref]

Keller, M. D.

M. D. Keller, E. Vargis, A. Mahadevan-Jansen, N. de Matos Granja, R. H. Wilson, M.-A. Mycek, and M. C. Kelley, “Development of a spatially offset Raman spectroscopy probe for breast tumor surgical margin evaluation,” J. Biomed. Opt. 16(7), 077006 (2011).
[Crossref]

Kelley, M. C.

M. D. Keller, E. Vargis, A. Mahadevan-Jansen, N. de Matos Granja, R. H. Wilson, M.-A. Mycek, and M. C. Kelley, “Development of a spatially offset Raman spectroscopy probe for breast tumor surgical margin evaluation,” J. Biomed. Opt. 16(7), 077006 (2011).
[Crossref]

Kierski, P. R.

R. Jain, D. Calderon, P. R. Kierski, M. J. Schurr, C. J. Czuprynski, C. J. Murphy, J. F. McAnulty, and N. L. Abbott, “Raman spectroscopy enables noninvasive biochemical characterization and identification of the stage of healing of a wound,” Anal. Chem. 86(8), 3764–3772 (2014).
[Crossref]

Koh, T. J.

L. Chen, R. Mirza, Y. Kwon, L. A. DiPietro, and T. J. Koh, “The murine excisional wound model: contraction revisited,” Wound Repair Regen. 23(6), 874–877 (2015).
[Crossref]

Kunapareddy, N.

J. R. Mourant, K. W. Short, S. Carpenter, N. Kunapareddy, L. Coburn, T. Powers, and J. P. Freyer, “Biochemical differences in tumorigenic and nontumorigenic cells measured by Raman and infrared spectroscopy,” J. Biomed. Opt. 10(3), 031106 (2005).
[Crossref]

Kwon, Y.

L. Chen, R. Mirza, Y. Kwon, L. A. DiPietro, and T. J. Koh, “The murine excisional wound model: contraction revisited,” Wound Repair Regen. 23(6), 874–877 (2015).
[Crossref]

Lademann, J.

U. Jacobi, M. Kaiser, R. Toll, S. Mangelsdorf, H. Audring, N. Otberg, W. Sterry, and J. Lademann, “Porcine ear skin: an in vitro model for human skin,” Skin Res. Technol. 13(1), 19–24 (2007).
[Crossref]

Lee, B.

K. A. Chan, G. Zhang, M. Tomic-Canic, O. Stojadinovic, B. Lee, C. R. Flach, and R. Mendelsohn, “A coordinated approach to cutaneous wound healing: vibrational microscopy and molecular biology,” J. Cell. Mol. Med. 12(5b), 2145–2154 (2008).
[Crossref]

Lee, Y.

Y. Lee and K. Hwang, “Skin thickness of Korean adults,” Surgical and Radiologic Anatomy 24(3-4), 183–189 (2002).
[Crossref]

Leigh, S. D.

Li, C.

W. Yan, H. Liu, X. Deng, Y. Jin, H. Sun, C. Li, N. Wang, and J. Chu, “Raman spectroscopy enables noninvasive biochemical identification of the collagen regeneration in cutaneous wound healing of diabetic mice treated with MSCs,” Lasers Med. Sci. 32(5), 1131–1141 (2017).
[Crossref]

Li, X.

Lieber, C. A.

Lim, M.

Lin, X.

Lin-Vien, D.

D. Lin-Vien, N. B. Colthup, W. G. Fateley, and J. G. Grasselli, The handbook of infrared and Raman characteristic frequencies of organic molecules (Elsevier, 1991).

Lipper, S.

A. Alimova, R. Chakraverty, R. Muthukattil, S. Elder, A. Katz, V. Sriramoju, S. Lipper, and R. Alfano, “In vivo molecular evaluation of guinea pig skin incisions healing after surgical suture and laser tissue welding using Raman spectroscopy,” J. Photochem. Photobiol., B 96(3), 178–183 (2009).
[Crossref]

Liu, H.

W. Yan, H. Liu, X. Deng, Y. Jin, H. Sun, C. Li, N. Wang, and J. Chu, “Raman spectroscopy enables noninvasive biochemical identification of the collagen regeneration in cutaneous wound healing of diabetic mice treated with MSCs,” Lasers Med. Sci. 32(5), 1131–1141 (2017).
[Crossref]

Liu, L. B.

Liu, Q.

Liu, W.

Longaker, M. T.

G. C. Gurtner, S. Werner, Y. Barrandon, and M. T. Longaker, “Wound repair and regeneration,” Nature 453(7193), 314–321 (2008).
[Crossref]

Lu, J.

P. Zhang, J. Lu, Y. Jing, S. Tang, D. Zhu, and Y. Bi, “Global epidemiology of diabetic foot ulceration: a systematic review and meta-analysis,” Ann. Med. (Abingdon, U. K.) 49(2), 106–116 (2017).
[Crossref]

Lucassen, G. W.

P. J. Caspers, H. A. Bruining, G. J. Puppels, G. W. Lucassen, and E. A. Carter, “In vivo confocal Raman microspectroscopy of the skin: noninvasive determination of molecular concentration profiles,” J. Invest. Dermatol. 116(3), 434–442 (2001).
[Crossref]

Mahadevan-Jansen, A.

M. D. Keller, E. Vargis, A. Mahadevan-Jansen, N. de Matos Granja, R. H. Wilson, M.-A. Mycek, and M. C. Kelley, “Development of a spatially offset Raman spectroscopy probe for breast tumor surgical margin evaluation,” J. Biomed. Opt. 16(7), 077006 (2011).
[Crossref]

C. A. Lieber and A. Mahadevan-Jansen, “Automated method for subtraction of fluorescence from biological Raman spectra,” Appl. Spectrosc. 57(11), 1363–1367 (2003).
[Crossref]

Maklebust, J.

D. R. Thomas, G. T. Rodeheaver, A. A. Bartolucci, R. A. Franz, C. Sussman, B. A. Ferrell, J. Cuddigan, N. A. Stotts, and J. Maklebust, “Pressure ulcer scale for healing: derivation and validation of the PUSH tool. The PUSH Task Force,” Advances in wound care: the journal for prevention and healing 10, 96–101 (1997).

Manfait, M.

T. Nguyen, C. Gobinet, J. Feru, S. B. Pasco, M. Manfait, and O. Piot, “Characterization of type I and IV collagens by Raman microspectroscopy: Identification of spectral markers of the dermo-epidermal junction,” Spectroscopy (N. Y., NY, U. S.) 27, 421–427 (2012).
[Crossref]

Mangelsdorf, S.

U. Jacobi, M. Kaiser, R. Toll, S. Mangelsdorf, H. Audring, N. Otberg, W. Sterry, and J. Lademann, “Porcine ear skin: an in vitro model for human skin,” Skin Res. Technol. 13(1), 19–24 (2007).
[Crossref]

Markey, M. K.

Mastromattei, A.

A. Capon, N. Pavoni, A. Mastromattei, and D. Di Lallo, “Pressure ulcer risk in long-term units: prevalence and associated factors,” J Adv Nurs 58(3), 263–272 (2007).
[Crossref]

Matousek, P.

McAnulty, J. F.

R. Jain, D. Calderon, P. R. Kierski, M. J. Schurr, C. J. Czuprynski, C. J. Murphy, J. F. McAnulty, and N. L. Abbott, “Raman spectroscopy enables noninvasive biochemical characterization and identification of the stage of healing of a wound,” Anal. Chem. 86(8), 3764–3772 (2014).
[Crossref]

Mendelsohn, R.

K. A. Chan, G. Zhang, M. Tomic-Canic, O. Stojadinovic, B. Lee, C. R. Flach, and R. Mendelsohn, “A coordinated approach to cutaneous wound healing: vibrational microscopy and molecular biology,” J. Cell. Mol. Med. 12(5b), 2145–2154 (2008).
[Crossref]

C. R. Flach, G. Zhang, and R. Mendelsohn, “Raman microscopy and imaging: applications to skin pharmacology and wound healing,” in Emerging Raman Applications and Techniques in Biomedical and Pharmaceutical Fields (Springer, 2010), pp. 365–384.

Mendez-Otero, M. M.

M. Anguiano-Morales, M. M. Mendez-Otero, M. D. Iturbe-Castillo, and S. Chávez-Cerda, “Conical dynamics of Bessel beams,” Opt. Eng. 46(7), 078001 (2007).
[Crossref]

Mirza, R.

L. Chen, R. Mirza, Y. Kwon, L. A. DiPietro, and T. J. Koh, “The murine excisional wound model: contraction revisited,” Wound Repair Regen. 23(6), 874–877 (2015).
[Crossref]

Morris, M.

Mourant, J. R.

J. R. Mourant, K. W. Short, S. Carpenter, N. Kunapareddy, L. Coburn, T. Powers, and J. P. Freyer, “Biochemical differences in tumorigenic and nontumorigenic cells measured by Raman and infrared spectroscopy,” J. Biomed. Opt. 10(3), 031106 (2005).
[Crossref]

Moy, A. J.

Murphy, C. J.

R. Jain, D. Calderon, P. R. Kierski, M. J. Schurr, C. J. Czuprynski, C. J. Murphy, J. F. McAnulty, and N. L. Abbott, “Raman spectroscopy enables noninvasive biochemical characterization and identification of the stage of healing of a wound,” Anal. Chem. 86(8), 3764–3772 (2014).
[Crossref]

Muthukattil, R.

A. Alimova, R. Chakraverty, R. Muthukattil, S. Elder, A. Katz, V. Sriramoju, S. Lipper, and R. Alfano, “In vivo molecular evaluation of guinea pig skin incisions healing after surgical suture and laser tissue welding using Raman spectroscopy,” J. Photochem. Photobiol., B 96(3), 178–183 (2009).
[Crossref]

Mycek, M.-A.

M. D. Keller, E. Vargis, A. Mahadevan-Jansen, N. de Matos Granja, R. H. Wilson, M.-A. Mycek, and M. C. Kelley, “Development of a spatially offset Raman spectroscopy probe for breast tumor surgical margin evaluation,” J. Biomed. Opt. 16(7), 077006 (2011).
[Crossref]

Nguyen, H. T.

Nguyen, T.

T. Nguyen, C. Gobinet, J. Feru, S. B. Pasco, M. Manfait, and O. Piot, “Characterization of type I and IV collagens by Raman microspectroscopy: Identification of spectral markers of the dermo-epidermal junction,” Spectroscopy (N. Y., NY, U. S.) 27, 421–427 (2012).
[Crossref]

Ong, Y. H.

Otberg, N.

U. Jacobi, M. Kaiser, R. Toll, S. Mangelsdorf, H. Audring, N. Otberg, W. Sterry, and J. Lademann, “Porcine ear skin: an in vitro model for human skin,” Skin Res. Technol. 13(1), 19–24 (2007).
[Crossref]

Parker, A.

Pasco, S. B.

T. Nguyen, C. Gobinet, J. Feru, S. B. Pasco, M. Manfait, and O. Piot, “Characterization of type I and IV collagens by Raman microspectroscopy: Identification of spectral markers of the dermo-epidermal junction,” Spectroscopy (N. Y., NY, U. S.) 27, 421–427 (2012).
[Crossref]

Pavoni, N.

A. Capon, N. Pavoni, A. Mastromattei, and D. Di Lallo, “Pressure ulcer risk in long-term units: prevalence and associated factors,” J Adv Nurs 58(3), 263–272 (2007).
[Crossref]

Perlaki, C. M.

Piot, O.

T. Nguyen, C. Gobinet, J. Feru, S. B. Pasco, M. Manfait, and O. Piot, “Characterization of type I and IV collagens by Raman microspectroscopy: Identification of spectral markers of the dermo-epidermal junction,” Spectroscopy (N. Y., NY, U. S.) 27, 421–427 (2012).
[Crossref]

Powers, T.

J. R. Mourant, K. W. Short, S. Carpenter, N. Kunapareddy, L. Coburn, T. Powers, and J. P. Freyer, “Biochemical differences in tumorigenic and nontumorigenic cells measured by Raman and infrared spectroscopy,” J. Biomed. Opt. 10(3), 031106 (2005).
[Crossref]

Puppels, G. J.

R. J. Richters, D. Falcone, N. E. Uzunbajakava, B. Varghese, P. J. Caspers, G. J. Puppels, P. E. van Erp, and P. C. van de Kerkhof, “Sensitive skin: assessment of the skin barrier using confocal Raman microspectroscopy,” Skin Pharmacol. Physiol. 30(1), 1–12 (2017).
[Crossref]

P. J. Caspers, H. A. Bruining, G. J. Puppels, G. W. Lucassen, and E. A. Carter, “In vivo confocal Raman microspectroscopy of the skin: noninvasive determination of molecular concentration profiles,” J. Invest. Dermatol. 116(3), 434–442 (2001).
[Crossref]

Reichenberg, J. S.

Richters, R. J.

R. J. Richters, D. Falcone, N. E. Uzunbajakava, B. Varghese, P. J. Caspers, G. J. Puppels, P. E. van Erp, and P. C. van de Kerkhof, “Sensitive skin: assessment of the skin barrier using confocal Raman microspectroscopy,” Skin Pharmacol. Physiol. 30(1), 1–12 (2017).
[Crossref]

Rodeheaver, G. T.

D. R. Thomas, G. T. Rodeheaver, A. A. Bartolucci, R. A. Franz, C. Sussman, B. A. Ferrell, J. Cuddigan, N. A. Stotts, and J. Maklebust, “Pressure ulcer scale for healing: derivation and validation of the PUSH tool. The PUSH Task Force,” Advances in wound care: the journal for prevention and healing 10, 96–101 (1997).

Romanelli, M.

G. S. Schultz, R. G. Sibbald, V. Falanga, E. A. Ayello, C. Dowsett, K. Harding, M. Romanelli, M. C. Stacey, L. Teot, and W. Vanscheidt, “Wound bed preparation: a systematic approach to wound management,” Wound Repair Regen. 11(s1), S1–S28 (2003).
[Crossref]

Salcido, R.

R. J. Goldman and R. Salcido, “More than one way to measure a wound: an overview of tools and techniques,” Advances in skin & wound care 15(5), 236–243 (2002).
[Crossref]

Savitzky, A.

A. Savitzky and M. J. Golay, “Smoothing and differentiation of data by simplified least squares procedures,” Anal. Chem. 36(8), 1627–1639 (1964).
[Crossref]

Schultz, G. S.

G. S. Schultz, R. G. Sibbald, V. Falanga, E. A. Ayello, C. Dowsett, K. Harding, M. Romanelli, M. C. Stacey, L. Teot, and W. Vanscheidt, “Wound bed preparation: a systematic approach to wound management,” Wound Repair Regen. 11(s1), S1–S28 (2003).
[Crossref]

Schurr, M. J.

R. Jain, D. Calderon, P. R. Kierski, M. J. Schurr, C. J. Czuprynski, C. J. Murphy, J. F. McAnulty, and N. L. Abbott, “Raman spectroscopy enables noninvasive biochemical characterization and identification of the stage of healing of a wound,” Anal. Chem. 86(8), 3764–3772 (2014).
[Crossref]

Schwartz, J. A.

S. L. Thomsen, H. Vijverberg, R. Huang, and J. A. Schwartz, “Changes in optical properties of rat skin during thermal coagulation,” in Laser-Tissue Interaction IV, (International Society for Optics and Photonics, 1993), 230–237.

Sebastian, K. R.

Short, K. W.

J. R. Mourant, K. W. Short, S. Carpenter, N. Kunapareddy, L. Coburn, T. Powers, and J. P. Freyer, “Biochemical differences in tumorigenic and nontumorigenic cells measured by Raman and infrared spectroscopy,” J. Biomed. Opt. 10(3), 031106 (2005).
[Crossref]

Sibbald, R. G.

G. S. Schultz, R. G. Sibbald, V. Falanga, E. A. Ayello, C. Dowsett, K. Harding, M. Romanelli, M. C. Stacey, L. Teot, and W. Vanscheidt, “Wound bed preparation: a systematic approach to wound management,” Wound Repair Regen. 11(s1), S1–S28 (2003).
[Crossref]

Singer, A. J.

A. J. Singer and R. A. Clark, “Cutaneous wound healing,” N. Engl. J. Med. 341(10), 738–746 (1999).
[Crossref]

Sriramoju, V.

A. Alimova, R. Chakraverty, R. Muthukattil, S. Elder, A. Katz, V. Sriramoju, S. Lipper, and R. Alfano, “In vivo molecular evaluation of guinea pig skin incisions healing after surgical suture and laser tissue welding using Raman spectroscopy,” J. Photochem. Photobiol., B 96(3), 178–183 (2009).
[Crossref]

Stacey, M. C.

G. S. Schultz, R. G. Sibbald, V. Falanga, E. A. Ayello, C. Dowsett, K. Harding, M. Romanelli, M. C. Stacey, L. Teot, and W. Vanscheidt, “Wound bed preparation: a systematic approach to wound management,” Wound Repair Regen. 11(s1), S1–S28 (2003).
[Crossref]

Sterry, W.

U. Jacobi, M. Kaiser, R. Toll, S. Mangelsdorf, H. Audring, N. Otberg, W. Sterry, and J. Lademann, “Porcine ear skin: an in vitro model for human skin,” Skin Res. Technol. 13(1), 19–24 (2007).
[Crossref]

Stojadinovic, O.

K. A. Chan, G. Zhang, M. Tomic-Canic, O. Stojadinovic, B. Lee, C. R. Flach, and R. Mendelsohn, “A coordinated approach to cutaneous wound healing: vibrational microscopy and molecular biology,” J. Cell. Mol. Med. 12(5b), 2145–2154 (2008).
[Crossref]

Stotts, N. A.

D. R. Thomas, G. T. Rodeheaver, A. A. Bartolucci, R. A. Franz, C. Sussman, B. A. Ferrell, J. Cuddigan, N. A. Stotts, and J. Maklebust, “Pressure ulcer scale for healing: derivation and validation of the PUSH tool. The PUSH Task Force,” Advances in wound care: the journal for prevention and healing 10, 96–101 (1997).

Sun, H.

W. Yan, H. Liu, X. Deng, Y. Jin, H. Sun, C. Li, N. Wang, and J. Chu, “Raman spectroscopy enables noninvasive biochemical identification of the collagen regeneration in cutaneous wound healing of diabetic mice treated with MSCs,” Lasers Med. Sci. 32(5), 1131–1141 (2017).
[Crossref]

Sussman, C.

D. R. Thomas, G. T. Rodeheaver, A. A. Bartolucci, R. A. Franz, C. Sussman, B. A. Ferrell, J. Cuddigan, N. A. Stotts, and J. Maklebust, “Pressure ulcer scale for healing: derivation and validation of the PUSH tool. The PUSH Task Force,” Advances in wound care: the journal for prevention and healing 10, 96–101 (1997).

Tang, S.

P. Zhang, J. Lu, Y. Jing, S. Tang, D. Zhu, and Y. Bi, “Global epidemiology of diabetic foot ulceration: a systematic review and meta-analysis,” Ann. Med. (Abingdon, U. K.) 49(2), 106–116 (2017).
[Crossref]

Teot, L.

G. S. Schultz, R. G. Sibbald, V. Falanga, E. A. Ayello, C. Dowsett, K. Harding, M. Romanelli, M. C. Stacey, L. Teot, and W. Vanscheidt, “Wound bed preparation: a systematic approach to wound management,” Wound Repair Regen. 11(s1), S1–S28 (2003).
[Crossref]

Thomas, D. R.

D. R. Thomas, G. T. Rodeheaver, A. A. Bartolucci, R. A. Franz, C. Sussman, B. A. Ferrell, J. Cuddigan, N. A. Stotts, and J. Maklebust, “Pressure ulcer scale for healing: derivation and validation of the PUSH tool. The PUSH Task Force,” Advances in wound care: the journal for prevention and healing 10, 96–101 (1997).

Thomsen, S. L.

S. L. Thomsen, H. Vijverberg, R. Huang, and J. A. Schwartz, “Changes in optical properties of rat skin during thermal coagulation,” in Laser-Tissue Interaction IV, (International Society for Optics and Photonics, 1993), 230–237.

Toll, R.

U. Jacobi, M. Kaiser, R. Toll, S. Mangelsdorf, H. Audring, N. Otberg, W. Sterry, and J. Lademann, “Porcine ear skin: an in vitro model for human skin,” Skin Res. Technol. 13(1), 19–24 (2007).
[Crossref]

Tomic-Canic, M.

K. A. Chan, G. Zhang, M. Tomic-Canic, O. Stojadinovic, B. Lee, C. R. Flach, and R. Mendelsohn, “A coordinated approach to cutaneous wound healing: vibrational microscopy and molecular biology,” J. Cell. Mol. Med. 12(5b), 2145–2154 (2008).
[Crossref]

Towrie, M.

Trentin, A. G.

H. D. Zomer and A. G. Trentin, “Skin wound healing in humans and mice: Challenges in translational research,” J. Dermatol. Sci. 90(1), 3–12 (2018).
[Crossref]

Tunnell, J. W.

Uzunbajakava, N. E.

R. J. Richters, D. Falcone, N. E. Uzunbajakava, B. Varghese, P. J. Caspers, G. J. Puppels, P. E. van Erp, and P. C. van de Kerkhof, “Sensitive skin: assessment of the skin barrier using confocal Raman microspectroscopy,” Skin Pharmacol. Physiol. 30(1), 1–12 (2017).
[Crossref]

van de Kerkhof, P. C.

R. J. Richters, D. Falcone, N. E. Uzunbajakava, B. Varghese, P. J. Caspers, G. J. Puppels, P. E. van Erp, and P. C. van de Kerkhof, “Sensitive skin: assessment of the skin barrier using confocal Raman microspectroscopy,” Skin Pharmacol. Physiol. 30(1), 1–12 (2017).
[Crossref]

van Erp, P. E.

R. J. Richters, D. Falcone, N. E. Uzunbajakava, B. Varghese, P. J. Caspers, G. J. Puppels, P. E. van Erp, and P. C. van de Kerkhof, “Sensitive skin: assessment of the skin barrier using confocal Raman microspectroscopy,” Skin Pharmacol. Physiol. 30(1), 1–12 (2017).
[Crossref]

Vanscheidt, W.

G. S. Schultz, R. G. Sibbald, V. Falanga, E. A. Ayello, C. Dowsett, K. Harding, M. Romanelli, M. C. Stacey, L. Teot, and W. Vanscheidt, “Wound bed preparation: a systematic approach to wound management,” Wound Repair Regen. 11(s1), S1–S28 (2003).
[Crossref]

Varghese, B.

R. J. Richters, D. Falcone, N. E. Uzunbajakava, B. Varghese, P. J. Caspers, G. J. Puppels, P. E. van Erp, and P. C. van de Kerkhof, “Sensitive skin: assessment of the skin barrier using confocal Raman microspectroscopy,” Skin Pharmacol. Physiol. 30(1), 1–12 (2017).
[Crossref]

Vargis, E.

M. D. Keller, E. Vargis, A. Mahadevan-Jansen, N. de Matos Granja, R. H. Wilson, M.-A. Mycek, and M. C. Kelley, “Development of a spatially offset Raman spectroscopy probe for breast tumor surgical margin evaluation,” J. Biomed. Opt. 16(7), 077006 (2011).
[Crossref]

Vijverberg, H.

S. L. Thomsen, H. Vijverberg, R. Huang, and J. A. Schwartz, “Changes in optical properties of rat skin during thermal coagulation,” in Laser-Tissue Interaction IV, (International Society for Optics and Photonics, 1993), 230–237.

Wang, N.

W. Yan, H. Liu, X. Deng, Y. Jin, H. Sun, C. Li, N. Wang, and J. Chu, “Raman spectroscopy enables noninvasive biochemical identification of the collagen regeneration in cutaneous wound healing of diabetic mice treated with MSCs,” Lasers Med. Sci. 32(5), 1131–1141 (2017).
[Crossref]

Welford, W. T.

Werner, S.

G. C. Gurtner, S. Werner, Y. Barrandon, and M. T. Longaker, “Wound repair and regeneration,” Nature 453(7193), 314–321 (2008).
[Crossref]

Wilson, R. H.

M. D. Keller, E. Vargis, A. Mahadevan-Jansen, N. de Matos Granja, R. H. Wilson, M.-A. Mycek, and M. C. Kelley, “Development of a spatially offset Raman spectroscopy probe for breast tumor surgical margin evaluation,” J. Biomed. Opt. 16(7), 077006 (2011).
[Crossref]

Wilson, T.

E. Botcherby, R. Juškaitis, and T. Wilson, “Scanning two photon fluorescence microscopy with extended depth of field,” Opt. Commun. 268(2), 253–260 (2006).
[Crossref]

Woodbury, M. G.

M. G. Woodbury, P. E. Houghton, K. E. Campbell, and D. H. Keast, “Development, validity, reliability, and responsiveness of a new leg ulcer measurement tool,” Advances in Skin & Wound Care 17(4), 187–196 (2004).
[Crossref]

Yan, W.

W. Yan, H. Liu, X. Deng, Y. Jin, H. Sun, C. Li, N. Wang, and J. Chu, “Raman spectroscopy enables noninvasive biochemical identification of the collagen regeneration in cutaneous wound healing of diabetic mice treated with MSCs,” Lasers Med. Sci. 32(5), 1131–1141 (2017).
[Crossref]

Yu, X. J.

Zaki, S. M.

S. M. Zaki, “Characteristics of the skin of the female albino rats in different ages: histological, morphometric and electron microscopic study,” J. Cytol. Histol. S3, 1 (2015).
[Crossref]

Zhang, G.

K. A. Chan, G. Zhang, M. Tomic-Canic, O. Stojadinovic, B. Lee, C. R. Flach, and R. Mendelsohn, “A coordinated approach to cutaneous wound healing: vibrational microscopy and molecular biology,” J. Cell. Mol. Med. 12(5b), 2145–2154 (2008).
[Crossref]

C. R. Flach, G. Zhang, and R. Mendelsohn, “Raman microscopy and imaging: applications to skin pharmacology and wound healing,” in Emerging Raman Applications and Techniques in Biomedical and Pharmaceutical Fields (Springer, 2010), pp. 365–384.

Zhang, J.

Zhang, P.

P. Zhang, J. Lu, Y. Jing, S. Tang, D. Zhu, and Y. Bi, “Global epidemiology of diabetic foot ulceration: a systematic review and meta-analysis,” Ann. Med. (Abingdon, U. K.) 49(2), 106–116 (2017).
[Crossref]

Zhu, D.

P. Zhang, J. Lu, Y. Jing, S. Tang, D. Zhu, and Y. Bi, “Global epidemiology of diabetic foot ulceration: a systematic review and meta-analysis,” Ann. Med. (Abingdon, U. K.) 49(2), 106–116 (2017).
[Crossref]

Zomer, H. D.

H. D. Zomer and A. G. Trentin, “Skin wound healing in humans and mice: Challenges in translational research,” J. Dermatol. Sci. 90(1), 3–12 (2018).
[Crossref]

Advances in Skin & Wound Care (1)

M. G. Woodbury, P. E. Houghton, K. E. Campbell, and D. H. Keast, “Development, validity, reliability, and responsiveness of a new leg ulcer measurement tool,” Advances in Skin & Wound Care 17(4), 187–196 (2004).
[Crossref]

R. J. Goldman and R. Salcido, “More than one way to measure a wound: an overview of tools and techniques,” Advances in skin & wound care 15(5), 236–243 (2002).
[Crossref]

Advances in wound care: the journal for prevention and healing (1)

D. R. Thomas, G. T. Rodeheaver, A. A. Bartolucci, R. A. Franz, C. Sussman, B. A. Ferrell, J. Cuddigan, N. A. Stotts, and J. Maklebust, “Pressure ulcer scale for healing: derivation and validation of the PUSH tool. The PUSH Task Force,” Advances in wound care: the journal for prevention and healing 10, 96–101 (1997).

Anal. Chem. (2)

R. Jain, D. Calderon, P. R. Kierski, M. J. Schurr, C. J. Czuprynski, C. J. Murphy, J. F. McAnulty, and N. L. Abbott, “Raman spectroscopy enables noninvasive biochemical characterization and identification of the stage of healing of a wound,” Anal. Chem. 86(8), 3764–3772 (2014).
[Crossref]

A. Savitzky and M. J. Golay, “Smoothing and differentiation of data by simplified least squares procedures,” Anal. Chem. 36(8), 1627–1639 (1964).
[Crossref]

Ann. Med. (Abingdon, U. K.) (1)

P. Zhang, J. Lu, Y. Jing, S. Tang, D. Zhu, and Y. Bi, “Global epidemiology of diabetic foot ulceration: a systematic review and meta-analysis,” Ann. Med. (Abingdon, U. K.) 49(2), 106–116 (2017).
[Crossref]

Appl. Spectrosc. (3)

Biomed. Opt. Express (2)

Burns (1)

K. G. Gürsu, “An experimental study for diagnosis of burn depth,” Burns 4(2), 97–103 (1977).
[Crossref]

J Adv Nurs (1)

A. Capon, N. Pavoni, A. Mastromattei, and D. Di Lallo, “Pressure ulcer risk in long-term units: prevalence and associated factors,” J Adv Nurs 58(3), 263–272 (2007).
[Crossref]

J. Biomed. Opt. (2)

M. D. Keller, E. Vargis, A. Mahadevan-Jansen, N. de Matos Granja, R. H. Wilson, M.-A. Mycek, and M. C. Kelley, “Development of a spatially offset Raman spectroscopy probe for breast tumor surgical margin evaluation,” J. Biomed. Opt. 16(7), 077006 (2011).
[Crossref]

J. R. Mourant, K. W. Short, S. Carpenter, N. Kunapareddy, L. Coburn, T. Powers, and J. P. Freyer, “Biochemical differences in tumorigenic and nontumorigenic cells measured by Raman and infrared spectroscopy,” J. Biomed. Opt. 10(3), 031106 (2005).
[Crossref]

J. Cell. Mol. Med. (1)

K. A. Chan, G. Zhang, M. Tomic-Canic, O. Stojadinovic, B. Lee, C. R. Flach, and R. Mendelsohn, “A coordinated approach to cutaneous wound healing: vibrational microscopy and molecular biology,” J. Cell. Mol. Med. 12(5b), 2145–2154 (2008).
[Crossref]

J. Cytol. Histol. (1)

S. M. Zaki, “Characteristics of the skin of the female albino rats in different ages: histological, morphometric and electron microscopic study,” J. Cytol. Histol. S3, 1 (2015).
[Crossref]

J. Dermatol. Sci. (1)

H. D. Zomer and A. G. Trentin, “Skin wound healing in humans and mice: Challenges in translational research,” J. Dermatol. Sci. 90(1), 3–12 (2018).
[Crossref]

J. Invest. Dermatol. (1)

P. J. Caspers, H. A. Bruining, G. J. Puppels, G. W. Lucassen, and E. A. Carter, “In vivo confocal Raman microspectroscopy of the skin: noninvasive determination of molecular concentration profiles,” J. Invest. Dermatol. 116(3), 434–442 (2001).
[Crossref]

J. Opt. Soc. Am. (1)

J. Photochem. Photobiol., B (1)

A. Alimova, R. Chakraverty, R. Muthukattil, S. Elder, A. Katz, V. Sriramoju, S. Lipper, and R. Alfano, “In vivo molecular evaluation of guinea pig skin incisions healing after surgical suture and laser tissue welding using Raman spectroscopy,” J. Photochem. Photobiol., B 96(3), 178–183 (2009).
[Crossref]

Lasers Med. Sci. (1)

W. Yan, H. Liu, X. Deng, Y. Jin, H. Sun, C. Li, N. Wang, and J. Chu, “Raman spectroscopy enables noninvasive biochemical identification of the collagen regeneration in cutaneous wound healing of diabetic mice treated with MSCs,” Lasers Med. Sci. 32(5), 1131–1141 (2017).
[Crossref]

N. Engl. J. Med. (1)

A. J. Singer and R. A. Clark, “Cutaneous wound healing,” N. Engl. J. Med. 341(10), 738–746 (1999).
[Crossref]

Nature (1)

G. C. Gurtner, S. Werner, Y. Barrandon, and M. T. Longaker, “Wound repair and regeneration,” Nature 453(7193), 314–321 (2008).
[Crossref]

Opt. Commun. (1)

E. Botcherby, R. Juškaitis, and T. Wilson, “Scanning two photon fluorescence microscopy with extended depth of field,” Opt. Commun. 268(2), 253–260 (2006).
[Crossref]

Opt. Eng. (1)

M. Anguiano-Morales, M. M. Mendez-Otero, M. D. Iturbe-Castillo, and S. Chávez-Cerda, “Conical dynamics of Bessel beams,” Opt. Eng. 46(7), 078001 (2007).
[Crossref]

Opt. Express (3)

Skin Pharmacol. Physiol. (1)

R. J. Richters, D. Falcone, N. E. Uzunbajakava, B. Varghese, P. J. Caspers, G. J. Puppels, P. E. van Erp, and P. C. van de Kerkhof, “Sensitive skin: assessment of the skin barrier using confocal Raman microspectroscopy,” Skin Pharmacol. Physiol. 30(1), 1–12 (2017).
[Crossref]

Skin Res. Technol. (1)

U. Jacobi, M. Kaiser, R. Toll, S. Mangelsdorf, H. Audring, N. Otberg, W. Sterry, and J. Lademann, “Porcine ear skin: an in vitro model for human skin,” Skin Res. Technol. 13(1), 19–24 (2007).
[Crossref]

Spectroscopy (N. Y., NY, U. S.) (1)

T. Nguyen, C. Gobinet, J. Feru, S. B. Pasco, M. Manfait, and O. Piot, “Characterization of type I and IV collagens by Raman microspectroscopy: Identification of spectral markers of the dermo-epidermal junction,” Spectroscopy (N. Y., NY, U. S.) 27, 421–427 (2012).
[Crossref]

Surgical and Radiologic Anatomy (1)

Y. Lee and K. Hwang, “Skin thickness of Korean adults,” Surgical and Radiologic Anatomy 24(3-4), 183–189 (2002).
[Crossref]

Wound Repair Regen. (2)

G. S. Schultz, R. G. Sibbald, V. Falanga, E. A. Ayello, C. Dowsett, K. Harding, M. Romanelli, M. C. Stacey, L. Teot, and W. Vanscheidt, “Wound bed preparation: a systematic approach to wound management,” Wound Repair Regen. 11(s1), S1–S28 (2003).
[Crossref]

L. Chen, R. Mirza, Y. Kwon, L. A. DiPietro, and T. J. Koh, “The murine excisional wound model: contraction revisited,” Wound Repair Regen. 23(6), 874–877 (2015).
[Crossref]

Wounds International (1)

C. Dowsett, M. N. Gronemann, and K. Harding, “Taking wound assessment beyond the edge,” Wounds International 6, 19–23 (2015).

Other (5)

Netscribes, “Global Wound Care Product Market (2018-2023),” (researchandmarkets.com, 2018).

C. R. Flach, G. Zhang, and R. Mendelsohn, “Raman microscopy and imaging: applications to skin pharmacology and wound healing,” in Emerging Raman Applications and Techniques in Biomedical and Pharmaceutical Fields (Springer, 2010), pp. 365–384.

J. U. Hjorth, Computer intensive statistical methods: Validation, model selection, and bootstrap (Routledge, 2017).

D. Lin-Vien, N. B. Colthup, W. G. Fateley, and J. G. Grasselli, The handbook of infrared and Raman characteristic frequencies of organic molecules (Elsevier, 1991).

S. L. Thomsen, H. Vijverberg, R. Huang, and J. A. Schwartz, “Changes in optical properties of rat skin during thermal coagulation,” in Laser-Tissue Interaction IV, (International Society for Optics and Photonics, 1993), 230–237.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Schematic of the depth sensitive Raman spectrometer for rat measurements. L1: collimation lens; LLF: laser line filter; ID1, ID2: iris diaphragm; AX1, AX2: axicon; L2, L3: beam shrinker; L4, L5, AX3, L6: custom lens assembly; AD1, AD2: achromatic doublet; LPF: long pass filter; PE: proximal end of fiber bundle; DE: distal end of fiber bundle; Ring 1-5: DE linear fiber bundles corresponding to PE rings.
Fig. 2.
Fig. 2. Experimental point spread function measured by imaging R6G fluorescence illuminated by the laser focal line. (a) Axial plane image of the PSF. (b) Fluorescence intensity profile along the axial axis, i.e. z axis, of the image. The intensity is shown in blue while the red lines indicate the edges of the FWHM. Scale bar: 50 µm by 9 µm.
Fig. 3.
Fig. 3. Depth calibration of fiber rings for signal collection. (a) Raman intensity at 520 cm−1, which corresponds to the Raman peak of silicon, measured from a silicon wafer along a 180 µm axial line, spanning from the top of the focal line to the bottom of the focal line. The axial distance is the distance between the top of the focal line and the surface of the silicon. (b) Normalized Raman intensity at 520 cm−1 for each fiber ring.
Fig. 4.
Fig. 4. Evaluation of depth sensitivity using transparent and turbid phantoms. The intensity ratio between the peak from the bottom layer to the peak from the top layer for each ring is shown for (a) transparent phantoms, (b) turbid phantoms.
Fig. 5.
Fig. 5. Porcine skin and subcutaneous fat sample measured using depth-sensitive RS. (a) White-light photo of the top surface of the porcine skin sample, in which the epidermis/dermis (i.e. skin) layer was on the top and the fat layer was at the bottom. The region measured is indicated by the arrow. (b) Ring 1 Reference Raman spectra taken from the top surface of full-thickness porcine skin and the exposed porcine fat. (c) The Raman spectra from the measurement location was acquired, showing the depth-sensitivity of each ring. Grey lines with text highlight specific Raman shifts (cm−1).
Fig. 6.
Fig. 6. Raman spectra from rat skin (a) proximal and (b) distal to the wound site acquired by Ring 1. Averaged Raman spectra is shown in the blue and red colored lines while the variation in each spectrum is shown in grey, in which the upper and lower bound of each point in the shaded region indicates mean ± standard deviation. Black lines with text highlight specific Raman shifts (cm−1).
Fig. 7.
Fig. 7. PLS-LDA plots showing the separation of spectra taken PWS (blue squares) and DWS (red triangles). The three PLS components showing most significant differences between two groups and the PC coefficients were plotted. (a) PC1 from Ring 4, (b) PC2 from Ring 1, (c) PC4 from Ring 5. (d)-(f) 2-D plots of separability. (g) 3-D plot showing separation between skin PWS and DWS. The diagonal green line represents the hyperplane dividing the DWS and PWS PCs.
Fig. 8.
Fig. 8. Classification accuracy achieved with LDA for differentiating between skin PWS and skin DWS using selected PCs from different combinations of rings. “1 Ring” refers to using data from one ring only while “2 Rings” refers to using data from two rings, and so on.

Tables (1)

Tables Icon

Table 1. Percent contribution of two layers in the porcine skin to Raman spectra from each ring