Abstract

While multifocal intraocular lenses (MIOLs) are increasingly implanted to correct for presbyopia, how one sees with a multifocal correction is hard to explain and imagine. The current study evaluates the quality of various visual simulating technologies by comparing vision with simulated MIOLs pre-operatively and the implanted MIOLs post-operatively in the same patients. Two simulation platforms were used: (1) a custom-developed adaptiveoptics (AO) system, with two visual simulator devices: a spatial light modulator (SLM) and an optotunable lens operating under temporal multiplexing (SimVis); and (2) a wearable, binocular, large field of view SimVis2Eyes clinical simulator (SimVis Gekko, 2Eyes Vision, Madrid, Spain). All devices were programmed to simulate a trifocal diffractive MIOL (POD F, FineVision, PhysIOL). Eight patients were measured pre-operatively simulating the trifocal lens and post-operatively with implantation of the same MIOL. Through-focus decimal visual acuity (TF VA) was measured (1) monocularly in monochromatic light using a four-alternative-forced-choice procedure in the AO system; and (2) binocularly using a clinical optotype in white light. Visual simulations pre-operatively predict well the TF VA performance found post-operatively in patients implanted with the real IOL. The average RMS difference between TF curves with the different visual simulators was 0.05 ± 0.01. The average RMS difference between the TF VA curves with the SimVis pre-operatively and the real MIOL post-operatively was 0.06 ± 0.01 in both platforms, and it was higher in cataract eyes (0.08 ± 0.01, on average across simulators) than in eyes with clear lens. In either group the shape of the TF curves is similar across simulators and pre- and post-operatively. TF curves cross-correlated significantly between simulators (lag k = 0, rho = 0.889), as well as with results with the real MIOL implanted (lag k = 0, rho = 0.853). Visual simulations are useful programmable tools to predict visual performance with MIOLs, both in an AO environment and in a clinical simulator. Pre-operative visual simulations and post-operative data are in good agreement.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Experimental validations of a tunable-lens-based visual demonstrator of multifocal corrections

Vyas Akondi, Lucie Sawides, Yassine Marrakchi, Enrique Gambra, Susana Marcos, and Carlos Dorronsoro
Biomed. Opt. Express 9(12) 6302-6317 (2018)

Portable simultaneous vision device to simulate multifocal corrections

Carlos Dorronsoro, Aiswaryah Radhakrishnan, Jose Ramon Alonso-Sanz, Daniel Pascual, Miriam Velasco-Ocana, Pablo Perez-Merino, and Susana Marcos
Optica 3(8) 918-924 (2016)

Temporal multiplexing to simulate multifocal intraocular lenses: theoretical considerations

Vyas Akondi, Carlos Dorronsoro, Enrique Gambra, and Susana Marcos
Biomed. Opt. Express 8(7) 3410-3425 (2017)

References

  • View by:
  • |
  • |
  • |

  1. W. N. Charman, “Developments in the correction of presbyopia II: surgical approaches,” Ophthalmic Physiol. Opt. 34(4), 397–426 (2014).
    [Crossref]
  2. M. Vinas, C. Dorronsoro, V. Gonzalez, D. Cortes, A. Radhakrishnan, and S. Marcos, “Testing vision with angular and radial multifocal designs using Adaptive Optics,” Vision Res. 132, 85–96 (2017).
    [Crossref]
  3. A. Radhakrishnan, C. Dorronsoro, and S. Marcos, “Differences in visual quality with orientation of a rotationally asymmetric bifocal intraocular lens design,” J. Cataract Refractive Surg. 42(9), 1276–1287 (2016).
    [Crossref]
  4. M. Vinas, L. Sawides, P. de Gracia, and S. Marcos, “Perceptual adaptation to the correction of natural astigmatism,” PLoS One 7(9), e46361 (2012).
    [Crossref]
  5. M. Vinas, C. Dorronsoro, D. Cortes, D. Pascual, and S. Marcos, “Longitudinal chromatic aberration of the human eye in the visible and near infrared from wavefront sensing, double-pass and psychophysics,” Biomed. Opt. Express 6(3), 948–962 (2015).
    [Crossref]
  6. M. Vinas, C. Dorronsoro, A. Radhakrishnan, C. Benedi-Garcia, E. LaVilla, J. Schwiegerling, and S. Marcos, “Comparison of vision through surface modulated and spatial light modulated multifocal optics,” Biomed. Opt. Express 8(4), 2055–2068 (2017).
    [Crossref]
  7. C. Schwarz, P. M. Prieto, E. J. Fernandez, and P. Artal, “Binocular adaptive optics vision analyzer with full control over the complex pupil functions,” Opt. Lett. 36(24), 4779–4781 (2011).
    [Crossref]
  8. C. Dorronsoro, A. Radhakrishnan, J. R. Alonso-Sanz, D. Pascual, M. Velasco-Ocana, P. Perez-Merino, and S. Marcos, “Portable simultaneous vision device to simulate multifocal corrections,” Optica 3(8), 918–924 (2016).
    [Crossref]
  9. P. de Gracia, C. Dorronsoro, E. Gambra, G. Marin, M. Hernandez, and S. Marcos, “Combining coma with astigmatism can improve retinal image over astigmatism alone,” Vision Res. 50(19), 2008–2014 (2010).
    [Crossref]
  10. M. Vinas, P. de Gracia, C. Dorronsoro, L. Sawides, G. Marin, M. Hernandez, and S. Marcos, “Astigmatism impact on visual performance: meridional and adaptational effects,” Optom. Vis. Sci. 90(12), 1430–1442 (2013).
    [Crossref]
  11. C. Schwarz, C. Canovas, S. Manzanera, H. Weeber, P. M. Prieto, P. Piers, and P. Artal, “Binocular visual acuity for the correction of spherical aberration in polychromatic and monochromatic light,” J. Vis. 14(2), 8 (2014).
    [Crossref]
  12. S. Manzanera and P. Artal, “Minimum change in spherical aberration that can be perceived,” Biomed. Opt. Express 7(9), 3471–3477 (2016).
    [Crossref]
  13. E. A. Villegas, S. Manzanera, C. M. Lago, L. Hervella, L. Sawides, and P. Artal, “Effect of Crystalline Lens Aberrations on Adaptive Optics Simulation of Intraocular Lenses,” J. Refract. Surg. 35(2), 126–131 (2019).
    [Crossref]
  14. R. Dou and M. K. Giles, “Closed-loop adaptive-optics system with a liquid-crystal television as a phase retarder,” Opt. Lett. 20(14), 1583–1585 (1995).
    [Crossref]
  15. G. D. Love, “Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator,” Appl. Opt. 36(7), 1517–1520 (1997).
    [Crossref]
  16. R. Martinez-Cuenca, V. Duran, J. Arines, J. Ares, Z. Jaroszewicz, S. Bara, L. Martinez-Leon, and J. Lancis, “Closed-loop adaptive optics with a single element for wavefront sensing and correction,” Opt. Lett. 36(18), 3702–3704 (2011).
    [Crossref]
  17. Z. Zhang, Z. You, and D. Chu, “Fundamentals of phase-only liquid crystal on silicon (LCOS) devices,” Light: Sci. Appl. 3(10), e213 (2014).
    [Crossref]
  18. J. Tabernero, C. Schwarz, E. J. Fernandez, and P. Artal, “Binocular visual simulation of a corneal inlay to increase depth of focus,” Invest. Ophthalmol. Visual Sci. 52(8), 5273–5277 (2011).
    [Crossref]
  19. S. Marcos, L. Sawides, E. Gambra, and C. Dorronsoro, “Influence of adaptive-optics ocular aberration correction on visual acuity at different luminances and contrast polarities,” J. Vis. 8(13), 1 (2008).
    [Crossref]
  20. L. Zhao, N. Bai, X. Li, L. S. Ong, Z. P. Fang, and A. K. Asundi, “Efficient implementation of a spatial light modulator as a diffractive optical microlens array in a digital Shack-Hartmann wavefront sensor,” Appl. Opt. 45(1), 90–94 (2006).
    [Crossref]
  21. S. Luque and J. Pujol, “Method and system for simulating/emulating vision via intraocular devices or lenses prior to surgery,” WO2012052585A1 (2012 2012).
  22. W. Brezna, K. Lux, N. Dragostinoff, C. Krutzler, N. Plank, R. Tobisch, A. Boltz, G. Garhofer, R. Told, K. Witkowska, and L. Schmetterer, “Psychophysical Vision Simulation of Diffractive Bifocal and Trifocal Intraocular Lenses,” Transl. Vis. Sci. Technol. 5(5), 13 (2016).
    [Crossref]
  23. M. Vinas, C. Benedi-Garcia, S. Aissati, D. Pascual, V. Akondi, C. Dorronsoro, and S. Marcos, “Visual simulators replicate vision with multifocal lenses,” Sci. Rep. 9(1), 1539 (2019).
    [Crossref]
  24. J. Pujol, M. Aldaba, A. Giner, J. Arasa, and S. O. Luque, “Visual performance evaluation of a new multifocal intraocular lens design before surgery,” Invest. Ophthalmol. Vis. Sci. 55(13), 3752 (2014).
  25. S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
    [Crossref]
  26. V. Akondi, C. Dorronsoro, E. Gambra, and S. Marcos, “Temporal multiplexing to simulate multifocal intraocular lenses: theoretical considerations,” Biomed. Opt. Express 8(7), 3410–3425 (2017).
    [Crossref]
  27. J. D. Marsack, L. N. Thibos, and R. A. Applegate, “Metrics of optical quality derived from wave aberrations predict visual performance,” J. Vis. 4(4), 8–328 (2004).
    [Crossref]
  28. D. Gatinel, C. Pagnoulle, Y. Houbrechts, and L. Gobin, “Design and qualification of a diffractive trifocal optical profile for intraocular lenses,” J. Cataract Refractive Surg. 37(11), 2060–2067 (2011).
    [Crossref]
  29. D. Gatinel and Y. Houbrechts, “Comparison of bifocal and trifocal diffractive and refractive intraocular lenses using an optical bench,” J. Cataract Refractive Surg. 39(7), 1093–1099 (2013).
    [Crossref]
  30. M. Vinas, A. Gonzalez-Ramos, C. Dorronsoro, V. Akondi, N. Garzon, F. Poyales, and S. Marcos, “In Vivo Measurement of Longitudinal Chromatic Aberration in Patients Implanted With Trifocal Diffractive Intraocular Lenses,” J. Refract. Surg. 33(11), 736–742 (2017).
    [Crossref]
  31. R. Barraquer, L. Pinilla Cortés, M. Allende, G. Montenegro, B. Ivankovic, J. D’Antin, H. Martínez Osorio, and R. Michael, “Validation of the Nuclear Cataract Grading System BCN 10,” Ophthalmic Res. 57(4), 247–251 (2017).
    [Crossref]
  32. V. Akondi, P. Perez-Merino, E. Martinez-Enriquez, C. Dorronsoro, N. Alejandre, I. Jimenez-Alfaro, and S. Marcos, “Evaluation of the True Wavefront Aberrations in Eyes Implanted With a Rotationally Asymmetric Multifocal Intraocular Lens,” J. Refract. Surg. 33(4), 257–265 (2017).
    [Crossref]
  33. C. Dorronsoro, X. Barcala, E. Gambra, V. Akondi, L. Sawides, Y. Marrakchi, V. Rodriguez-Lopez, C. Benedi-Garcia, M. Vinas, E. Lage, and S. Marcos, “Tunable lenses: dynamic characterization and fine-tuned control for high-speed applications,” Opt. Express 27(3), 2085–2100 (2019).
    [Crossref]
  34. W. H. Ehrenstein and A. Ehrenstein, “Psychophysical methods,” in Modern techniques in neuroscience research, U. Windhorst and H. Johansson, eds. (Springer, 1999), pp. 1211–1240.
  35. D. H. Brainard, “The Psychophysics Toolbox,” Spat Vis 10(4), 433–436 (1997).
    [Crossref]
  36. J. T. Holladay, “Proper method for calculating average visual acuity,” J. Refract. Surg. 13, 388–391 (1997).
    [Crossref]
  37. F. Poyales, N. Garzon, J. J. Rozema, C. Romero, and B. O. de Zarate, “Stability of a Novel Intraocular Lens Design: Comparison of Two Trifocal Lenses,” J. Refract. Surg. 32(6), 394–402 (2016).
    [Crossref]
  38. K. G. Gundersen and R. Potvin, “Trifocal intraocular lenses: a comparison of the visual performance and quality of vision provided by two different lens designs,” Clin. Ophthalmol. 11, 1081–1087 (2017).
    [Crossref]
  39. D. Madrid-Costa, C. Perez-Vives, J. Ruiz-Alcocer, C. Albarran-Diego, and R. Montes-Mico, “Visual simulation through different intraocular lenses in patients with previous myopic corneal ablation using adaptive optics: effect of tilt and decentration,” J. Cataract Refractive Surg. 38(5), 774–786 (2012).
    [Crossref]
  40. E. J. Fernandez, P. M. Prieto, and P. Artal, “Binocular adaptive optics visual simulator,” Opt. Lett. 34(17), 2628–2630 (2009).
    [Crossref]
  41. P. de Gracia, C. Dorronsoro, A. Sanchez-Gonzalez, L. Sawides, and S. Marcos, “Experimental simulation of simultaneous vision,” Invest. Ophthalmol. Visual Sci. 54(1), 415–422 (2013).
    [Crossref]
  42. P. A. Piers, E. J. Fernandez, S. Manzanera, S. Norrby, and P. Artal, “Adaptive optics simulation of intraocular lenses with modified spherical aberration,” Invest. Ophthalmol. Visual Sci. 45(12), 4601–4610 (2004).
    [Crossref]
  43. S. Manzanera, P. M. Prieto, D. B. Ayala, J. M. Lindacher, and P. Artal, “Liquid crystal Adaptive Optics Visual Simulator: Application to testing and design of ophthalmic optical elements,” Opt. Express 15(24), 16177–16188 (2007).
    [Crossref]
  44. Z. Bouchal, V. Chlup, R. Celechovsky, P. Bouchal, and I. C. Nistor, “Achromatic correction of diffractive dispersion in white light SLM imaging,” Opt. Express 22(10), 12046–12059 (2014).
    [Crossref]

2019 (3)

E. A. Villegas, S. Manzanera, C. M. Lago, L. Hervella, L. Sawides, and P. Artal, “Effect of Crystalline Lens Aberrations on Adaptive Optics Simulation of Intraocular Lenses,” J. Refract. Surg. 35(2), 126–131 (2019).
[Crossref]

M. Vinas, C. Benedi-Garcia, S. Aissati, D. Pascual, V. Akondi, C. Dorronsoro, and S. Marcos, “Visual simulators replicate vision with multifocal lenses,” Sci. Rep. 9(1), 1539 (2019).
[Crossref]

C. Dorronsoro, X. Barcala, E. Gambra, V. Akondi, L. Sawides, Y. Marrakchi, V. Rodriguez-Lopez, C. Benedi-Garcia, M. Vinas, E. Lage, and S. Marcos, “Tunable lenses: dynamic characterization and fine-tuned control for high-speed applications,” Opt. Express 27(3), 2085–2100 (2019).
[Crossref]

2017 (8)

M. Vinas, C. Dorronsoro, A. Radhakrishnan, C. Benedi-Garcia, E. LaVilla, J. Schwiegerling, and S. Marcos, “Comparison of vision through surface modulated and spatial light modulated multifocal optics,” Biomed. Opt. Express 8(4), 2055–2068 (2017).
[Crossref]

V. Akondi, C. Dorronsoro, E. Gambra, and S. Marcos, “Temporal multiplexing to simulate multifocal intraocular lenses: theoretical considerations,” Biomed. Opt. Express 8(7), 3410–3425 (2017).
[Crossref]

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref]

M. Vinas, C. Dorronsoro, V. Gonzalez, D. Cortes, A. Radhakrishnan, and S. Marcos, “Testing vision with angular and radial multifocal designs using Adaptive Optics,” Vision Res. 132, 85–96 (2017).
[Crossref]

M. Vinas, A. Gonzalez-Ramos, C. Dorronsoro, V. Akondi, N. Garzon, F. Poyales, and S. Marcos, “In Vivo Measurement of Longitudinal Chromatic Aberration in Patients Implanted With Trifocal Diffractive Intraocular Lenses,” J. Refract. Surg. 33(11), 736–742 (2017).
[Crossref]

R. Barraquer, L. Pinilla Cortés, M. Allende, G. Montenegro, B. Ivankovic, J. D’Antin, H. Martínez Osorio, and R. Michael, “Validation of the Nuclear Cataract Grading System BCN 10,” Ophthalmic Res. 57(4), 247–251 (2017).
[Crossref]

V. Akondi, P. Perez-Merino, E. Martinez-Enriquez, C. Dorronsoro, N. Alejandre, I. Jimenez-Alfaro, and S. Marcos, “Evaluation of the True Wavefront Aberrations in Eyes Implanted With a Rotationally Asymmetric Multifocal Intraocular Lens,” J. Refract. Surg. 33(4), 257–265 (2017).
[Crossref]

K. G. Gundersen and R. Potvin, “Trifocal intraocular lenses: a comparison of the visual performance and quality of vision provided by two different lens designs,” Clin. Ophthalmol. 11, 1081–1087 (2017).
[Crossref]

2016 (5)

F. Poyales, N. Garzon, J. J. Rozema, C. Romero, and B. O. de Zarate, “Stability of a Novel Intraocular Lens Design: Comparison of Two Trifocal Lenses,” J. Refract. Surg. 32(6), 394–402 (2016).
[Crossref]

A. Radhakrishnan, C. Dorronsoro, and S. Marcos, “Differences in visual quality with orientation of a rotationally asymmetric bifocal intraocular lens design,” J. Cataract Refractive Surg. 42(9), 1276–1287 (2016).
[Crossref]

W. Brezna, K. Lux, N. Dragostinoff, C. Krutzler, N. Plank, R. Tobisch, A. Boltz, G. Garhofer, R. Told, K. Witkowska, and L. Schmetterer, “Psychophysical Vision Simulation of Diffractive Bifocal and Trifocal Intraocular Lenses,” Transl. Vis. Sci. Technol. 5(5), 13 (2016).
[Crossref]

S. Manzanera and P. Artal, “Minimum change in spherical aberration that can be perceived,” Biomed. Opt. Express 7(9), 3471–3477 (2016).
[Crossref]

C. Dorronsoro, A. Radhakrishnan, J. R. Alonso-Sanz, D. Pascual, M. Velasco-Ocana, P. Perez-Merino, and S. Marcos, “Portable simultaneous vision device to simulate multifocal corrections,” Optica 3(8), 918–924 (2016).
[Crossref]

2015 (1)

2014 (5)

Z. Bouchal, V. Chlup, R. Celechovsky, P. Bouchal, and I. C. Nistor, “Achromatic correction of diffractive dispersion in white light SLM imaging,” Opt. Express 22(10), 12046–12059 (2014).
[Crossref]

C. Schwarz, C. Canovas, S. Manzanera, H. Weeber, P. M. Prieto, P. Piers, and P. Artal, “Binocular visual acuity for the correction of spherical aberration in polychromatic and monochromatic light,” J. Vis. 14(2), 8 (2014).
[Crossref]

W. N. Charman, “Developments in the correction of presbyopia II: surgical approaches,” Ophthalmic Physiol. Opt. 34(4), 397–426 (2014).
[Crossref]

J. Pujol, M. Aldaba, A. Giner, J. Arasa, and S. O. Luque, “Visual performance evaluation of a new multifocal intraocular lens design before surgery,” Invest. Ophthalmol. Vis. Sci. 55(13), 3752 (2014).

Z. Zhang, Z. You, and D. Chu, “Fundamentals of phase-only liquid crystal on silicon (LCOS) devices,” Light: Sci. Appl. 3(10), e213 (2014).
[Crossref]

2013 (3)

M. Vinas, P. de Gracia, C. Dorronsoro, L. Sawides, G. Marin, M. Hernandez, and S. Marcos, “Astigmatism impact on visual performance: meridional and adaptational effects,” Optom. Vis. Sci. 90(12), 1430–1442 (2013).
[Crossref]

P. de Gracia, C. Dorronsoro, A. Sanchez-Gonzalez, L. Sawides, and S. Marcos, “Experimental simulation of simultaneous vision,” Invest. Ophthalmol. Visual Sci. 54(1), 415–422 (2013).
[Crossref]

D. Gatinel and Y. Houbrechts, “Comparison of bifocal and trifocal diffractive and refractive intraocular lenses using an optical bench,” J. Cataract Refractive Surg. 39(7), 1093–1099 (2013).
[Crossref]

2012 (2)

D. Madrid-Costa, C. Perez-Vives, J. Ruiz-Alcocer, C. Albarran-Diego, and R. Montes-Mico, “Visual simulation through different intraocular lenses in patients with previous myopic corneal ablation using adaptive optics: effect of tilt and decentration,” J. Cataract Refractive Surg. 38(5), 774–786 (2012).
[Crossref]

M. Vinas, L. Sawides, P. de Gracia, and S. Marcos, “Perceptual adaptation to the correction of natural astigmatism,” PLoS One 7(9), e46361 (2012).
[Crossref]

2011 (4)

J. Tabernero, C. Schwarz, E. J. Fernandez, and P. Artal, “Binocular visual simulation of a corneal inlay to increase depth of focus,” Invest. Ophthalmol. Visual Sci. 52(8), 5273–5277 (2011).
[Crossref]

D. Gatinel, C. Pagnoulle, Y. Houbrechts, and L. Gobin, “Design and qualification of a diffractive trifocal optical profile for intraocular lenses,” J. Cataract Refractive Surg. 37(11), 2060–2067 (2011).
[Crossref]

R. Martinez-Cuenca, V. Duran, J. Arines, J. Ares, Z. Jaroszewicz, S. Bara, L. Martinez-Leon, and J. Lancis, “Closed-loop adaptive optics with a single element for wavefront sensing and correction,” Opt. Lett. 36(18), 3702–3704 (2011).
[Crossref]

C. Schwarz, P. M. Prieto, E. J. Fernandez, and P. Artal, “Binocular adaptive optics vision analyzer with full control over the complex pupil functions,” Opt. Lett. 36(24), 4779–4781 (2011).
[Crossref]

2010 (1)

P. de Gracia, C. Dorronsoro, E. Gambra, G. Marin, M. Hernandez, and S. Marcos, “Combining coma with astigmatism can improve retinal image over astigmatism alone,” Vision Res. 50(19), 2008–2014 (2010).
[Crossref]

2009 (1)

2008 (1)

S. Marcos, L. Sawides, E. Gambra, and C. Dorronsoro, “Influence of adaptive-optics ocular aberration correction on visual acuity at different luminances and contrast polarities,” J. Vis. 8(13), 1 (2008).
[Crossref]

2007 (1)

2006 (1)

2004 (2)

P. A. Piers, E. J. Fernandez, S. Manzanera, S. Norrby, and P. Artal, “Adaptive optics simulation of intraocular lenses with modified spherical aberration,” Invest. Ophthalmol. Visual Sci. 45(12), 4601–4610 (2004).
[Crossref]

J. D. Marsack, L. N. Thibos, and R. A. Applegate, “Metrics of optical quality derived from wave aberrations predict visual performance,” J. Vis. 4(4), 8–328 (2004).
[Crossref]

1997 (3)

G. D. Love, “Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator,” Appl. Opt. 36(7), 1517–1520 (1997).
[Crossref]

D. H. Brainard, “The Psychophysics Toolbox,” Spat Vis 10(4), 433–436 (1997).
[Crossref]

J. T. Holladay, “Proper method for calculating average visual acuity,” J. Refract. Surg. 13, 388–391 (1997).
[Crossref]

1995 (1)

Aissati, S.

M. Vinas, C. Benedi-Garcia, S. Aissati, D. Pascual, V. Akondi, C. Dorronsoro, and S. Marcos, “Visual simulators replicate vision with multifocal lenses,” Sci. Rep. 9(1), 1539 (2019).
[Crossref]

Akondi, V.

M. Vinas, C. Benedi-Garcia, S. Aissati, D. Pascual, V. Akondi, C. Dorronsoro, and S. Marcos, “Visual simulators replicate vision with multifocal lenses,” Sci. Rep. 9(1), 1539 (2019).
[Crossref]

C. Dorronsoro, X. Barcala, E. Gambra, V. Akondi, L. Sawides, Y. Marrakchi, V. Rodriguez-Lopez, C. Benedi-Garcia, M. Vinas, E. Lage, and S. Marcos, “Tunable lenses: dynamic characterization and fine-tuned control for high-speed applications,” Opt. Express 27(3), 2085–2100 (2019).
[Crossref]

V. Akondi, C. Dorronsoro, E. Gambra, and S. Marcos, “Temporal multiplexing to simulate multifocal intraocular lenses: theoretical considerations,” Biomed. Opt. Express 8(7), 3410–3425 (2017).
[Crossref]

M. Vinas, A. Gonzalez-Ramos, C. Dorronsoro, V. Akondi, N. Garzon, F. Poyales, and S. Marcos, “In Vivo Measurement of Longitudinal Chromatic Aberration in Patients Implanted With Trifocal Diffractive Intraocular Lenses,” J. Refract. Surg. 33(11), 736–742 (2017).
[Crossref]

V. Akondi, P. Perez-Merino, E. Martinez-Enriquez, C. Dorronsoro, N. Alejandre, I. Jimenez-Alfaro, and S. Marcos, “Evaluation of the True Wavefront Aberrations in Eyes Implanted With a Rotationally Asymmetric Multifocal Intraocular Lens,” J. Refract. Surg. 33(4), 257–265 (2017).
[Crossref]

Albarran-Diego, C.

D. Madrid-Costa, C. Perez-Vives, J. Ruiz-Alcocer, C. Albarran-Diego, and R. Montes-Mico, “Visual simulation through different intraocular lenses in patients with previous myopic corneal ablation using adaptive optics: effect of tilt and decentration,” J. Cataract Refractive Surg. 38(5), 774–786 (2012).
[Crossref]

Aldaba, M.

J. Pujol, M. Aldaba, A. Giner, J. Arasa, and S. O. Luque, “Visual performance evaluation of a new multifocal intraocular lens design before surgery,” Invest. Ophthalmol. Vis. Sci. 55(13), 3752 (2014).

Alejandre, N.

V. Akondi, P. Perez-Merino, E. Martinez-Enriquez, C. Dorronsoro, N. Alejandre, I. Jimenez-Alfaro, and S. Marcos, “Evaluation of the True Wavefront Aberrations in Eyes Implanted With a Rotationally Asymmetric Multifocal Intraocular Lens,” J. Refract. Surg. 33(4), 257–265 (2017).
[Crossref]

Allende, M.

R. Barraquer, L. Pinilla Cortés, M. Allende, G. Montenegro, B. Ivankovic, J. D’Antin, H. Martínez Osorio, and R. Michael, “Validation of the Nuclear Cataract Grading System BCN 10,” Ophthalmic Res. 57(4), 247–251 (2017).
[Crossref]

Alonso-Sanz, J. R.

Applegate, R. A.

J. D. Marsack, L. N. Thibos, and R. A. Applegate, “Metrics of optical quality derived from wave aberrations predict visual performance,” J. Vis. 4(4), 8–328 (2004).
[Crossref]

Arasa, J.

J. Pujol, M. Aldaba, A. Giner, J. Arasa, and S. O. Luque, “Visual performance evaluation of a new multifocal intraocular lens design before surgery,” Invest. Ophthalmol. Vis. Sci. 55(13), 3752 (2014).

Ares, J.

Arines, J.

Artal, P.

E. A. Villegas, S. Manzanera, C. M. Lago, L. Hervella, L. Sawides, and P. Artal, “Effect of Crystalline Lens Aberrations on Adaptive Optics Simulation of Intraocular Lenses,” J. Refract. Surg. 35(2), 126–131 (2019).
[Crossref]

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref]

S. Manzanera and P. Artal, “Minimum change in spherical aberration that can be perceived,” Biomed. Opt. Express 7(9), 3471–3477 (2016).
[Crossref]

C. Schwarz, C. Canovas, S. Manzanera, H. Weeber, P. M. Prieto, P. Piers, and P. Artal, “Binocular visual acuity for the correction of spherical aberration in polychromatic and monochromatic light,” J. Vis. 14(2), 8 (2014).
[Crossref]

J. Tabernero, C. Schwarz, E. J. Fernandez, and P. Artal, “Binocular visual simulation of a corneal inlay to increase depth of focus,” Invest. Ophthalmol. Visual Sci. 52(8), 5273–5277 (2011).
[Crossref]

C. Schwarz, P. M. Prieto, E. J. Fernandez, and P. Artal, “Binocular adaptive optics vision analyzer with full control over the complex pupil functions,” Opt. Lett. 36(24), 4779–4781 (2011).
[Crossref]

E. J. Fernandez, P. M. Prieto, and P. Artal, “Binocular adaptive optics visual simulator,” Opt. Lett. 34(17), 2628–2630 (2009).
[Crossref]

S. Manzanera, P. M. Prieto, D. B. Ayala, J. M. Lindacher, and P. Artal, “Liquid crystal Adaptive Optics Visual Simulator: Application to testing and design of ophthalmic optical elements,” Opt. Express 15(24), 16177–16188 (2007).
[Crossref]

P. A. Piers, E. J. Fernandez, S. Manzanera, S. Norrby, and P. Artal, “Adaptive optics simulation of intraocular lenses with modified spherical aberration,” Invest. Ophthalmol. Visual Sci. 45(12), 4601–4610 (2004).
[Crossref]

Asundi, A. K.

Atchison, D. A.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref]

Ayala, D. B.

Bai, N.

Bara, S.

Barcala, X.

Barraquer, R.

R. Barraquer, L. Pinilla Cortés, M. Allende, G. Montenegro, B. Ivankovic, J. D’Antin, H. Martínez Osorio, and R. Michael, “Validation of the Nuclear Cataract Grading System BCN 10,” Ophthalmic Res. 57(4), 247–251 (2017).
[Crossref]

Benedi-Garcia, C.

Boltz, A.

W. Brezna, K. Lux, N. Dragostinoff, C. Krutzler, N. Plank, R. Tobisch, A. Boltz, G. Garhofer, R. Told, K. Witkowska, and L. Schmetterer, “Psychophysical Vision Simulation of Diffractive Bifocal and Trifocal Intraocular Lenses,” Transl. Vis. Sci. Technol. 5(5), 13 (2016).
[Crossref]

Bouchal, P.

Bouchal, Z.

Brainard, D. H.

D. H. Brainard, “The Psychophysics Toolbox,” Spat Vis 10(4), 433–436 (1997).
[Crossref]

Brezna, W.

W. Brezna, K. Lux, N. Dragostinoff, C. Krutzler, N. Plank, R. Tobisch, A. Boltz, G. Garhofer, R. Told, K. Witkowska, and L. Schmetterer, “Psychophysical Vision Simulation of Diffractive Bifocal and Trifocal Intraocular Lenses,” Transl. Vis. Sci. Technol. 5(5), 13 (2016).
[Crossref]

Burns, S. A.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref]

Campbell, M.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref]

Canovas, C.

C. Schwarz, C. Canovas, S. Manzanera, H. Weeber, P. M. Prieto, P. Piers, and P. Artal, “Binocular visual acuity for the correction of spherical aberration in polychromatic and monochromatic light,” J. Vis. 14(2), 8 (2014).
[Crossref]

Carroll, J.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref]

Celechovsky, R.

Charman, W. N.

W. N. Charman, “Developments in the correction of presbyopia II: surgical approaches,” Ophthalmic Physiol. Opt. 34(4), 397–426 (2014).
[Crossref]

Chlup, V.

Choi, S. S.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref]

Chu, D.

Z. Zhang, Z. You, and D. Chu, “Fundamentals of phase-only liquid crystal on silicon (LCOS) devices,” Light: Sci. Appl. 3(10), e213 (2014).
[Crossref]

Cortes, D.

M. Vinas, C. Dorronsoro, V. Gonzalez, D. Cortes, A. Radhakrishnan, and S. Marcos, “Testing vision with angular and radial multifocal designs using Adaptive Optics,” Vision Res. 132, 85–96 (2017).
[Crossref]

M. Vinas, C. Dorronsoro, D. Cortes, D. Pascual, and S. Marcos, “Longitudinal chromatic aberration of the human eye in the visible and near infrared from wavefront sensing, double-pass and psychophysics,” Biomed. Opt. Express 6(3), 948–962 (2015).
[Crossref]

D’Antin, J.

R. Barraquer, L. Pinilla Cortés, M. Allende, G. Montenegro, B. Ivankovic, J. D’Antin, H. Martínez Osorio, and R. Michael, “Validation of the Nuclear Cataract Grading System BCN 10,” Ophthalmic Res. 57(4), 247–251 (2017).
[Crossref]

de Gracia, P.

M. Vinas, P. de Gracia, C. Dorronsoro, L. Sawides, G. Marin, M. Hernandez, and S. Marcos, “Astigmatism impact on visual performance: meridional and adaptational effects,” Optom. Vis. Sci. 90(12), 1430–1442 (2013).
[Crossref]

P. de Gracia, C. Dorronsoro, A. Sanchez-Gonzalez, L. Sawides, and S. Marcos, “Experimental simulation of simultaneous vision,” Invest. Ophthalmol. Visual Sci. 54(1), 415–422 (2013).
[Crossref]

M. Vinas, L. Sawides, P. de Gracia, and S. Marcos, “Perceptual adaptation to the correction of natural astigmatism,” PLoS One 7(9), e46361 (2012).
[Crossref]

P. de Gracia, C. Dorronsoro, E. Gambra, G. Marin, M. Hernandez, and S. Marcos, “Combining coma with astigmatism can improve retinal image over astigmatism alone,” Vision Res. 50(19), 2008–2014 (2010).
[Crossref]

de Zarate, B. O.

F. Poyales, N. Garzon, J. J. Rozema, C. Romero, and B. O. de Zarate, “Stability of a Novel Intraocular Lens Design: Comparison of Two Trifocal Lenses,” J. Refract. Surg. 32(6), 394–402 (2016).
[Crossref]

Doble, N.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref]

Dorronsoro, C.

M. Vinas, C. Benedi-Garcia, S. Aissati, D. Pascual, V. Akondi, C. Dorronsoro, and S. Marcos, “Visual simulators replicate vision with multifocal lenses,” Sci. Rep. 9(1), 1539 (2019).
[Crossref]

C. Dorronsoro, X. Barcala, E. Gambra, V. Akondi, L. Sawides, Y. Marrakchi, V. Rodriguez-Lopez, C. Benedi-Garcia, M. Vinas, E. Lage, and S. Marcos, “Tunable lenses: dynamic characterization and fine-tuned control for high-speed applications,” Opt. Express 27(3), 2085–2100 (2019).
[Crossref]

V. Akondi, C. Dorronsoro, E. Gambra, and S. Marcos, “Temporal multiplexing to simulate multifocal intraocular lenses: theoretical considerations,” Biomed. Opt. Express 8(7), 3410–3425 (2017).
[Crossref]

M. Vinas, C. Dorronsoro, A. Radhakrishnan, C. Benedi-Garcia, E. LaVilla, J. Schwiegerling, and S. Marcos, “Comparison of vision through surface modulated and spatial light modulated multifocal optics,” Biomed. Opt. Express 8(4), 2055–2068 (2017).
[Crossref]

M. Vinas, C. Dorronsoro, V. Gonzalez, D. Cortes, A. Radhakrishnan, and S. Marcos, “Testing vision with angular and radial multifocal designs using Adaptive Optics,” Vision Res. 132, 85–96 (2017).
[Crossref]

V. Akondi, P. Perez-Merino, E. Martinez-Enriquez, C. Dorronsoro, N. Alejandre, I. Jimenez-Alfaro, and S. Marcos, “Evaluation of the True Wavefront Aberrations in Eyes Implanted With a Rotationally Asymmetric Multifocal Intraocular Lens,” J. Refract. Surg. 33(4), 257–265 (2017).
[Crossref]

M. Vinas, A. Gonzalez-Ramos, C. Dorronsoro, V. Akondi, N. Garzon, F. Poyales, and S. Marcos, “In Vivo Measurement of Longitudinal Chromatic Aberration in Patients Implanted With Trifocal Diffractive Intraocular Lenses,” J. Refract. Surg. 33(11), 736–742 (2017).
[Crossref]

A. Radhakrishnan, C. Dorronsoro, and S. Marcos, “Differences in visual quality with orientation of a rotationally asymmetric bifocal intraocular lens design,” J. Cataract Refractive Surg. 42(9), 1276–1287 (2016).
[Crossref]

C. Dorronsoro, A. Radhakrishnan, J. R. Alonso-Sanz, D. Pascual, M. Velasco-Ocana, P. Perez-Merino, and S. Marcos, “Portable simultaneous vision device to simulate multifocal corrections,” Optica 3(8), 918–924 (2016).
[Crossref]

M. Vinas, C. Dorronsoro, D. Cortes, D. Pascual, and S. Marcos, “Longitudinal chromatic aberration of the human eye in the visible and near infrared from wavefront sensing, double-pass and psychophysics,” Biomed. Opt. Express 6(3), 948–962 (2015).
[Crossref]

P. de Gracia, C. Dorronsoro, A. Sanchez-Gonzalez, L. Sawides, and S. Marcos, “Experimental simulation of simultaneous vision,” Invest. Ophthalmol. Visual Sci. 54(1), 415–422 (2013).
[Crossref]

M. Vinas, P. de Gracia, C. Dorronsoro, L. Sawides, G. Marin, M. Hernandez, and S. Marcos, “Astigmatism impact on visual performance: meridional and adaptational effects,” Optom. Vis. Sci. 90(12), 1430–1442 (2013).
[Crossref]

P. de Gracia, C. Dorronsoro, E. Gambra, G. Marin, M. Hernandez, and S. Marcos, “Combining coma with astigmatism can improve retinal image over astigmatism alone,” Vision Res. 50(19), 2008–2014 (2010).
[Crossref]

S. Marcos, L. Sawides, E. Gambra, and C. Dorronsoro, “Influence of adaptive-optics ocular aberration correction on visual acuity at different luminances and contrast polarities,” J. Vis. 8(13), 1 (2008).
[Crossref]

Dou, R.

Dragostinoff, N.

W. Brezna, K. Lux, N. Dragostinoff, C. Krutzler, N. Plank, R. Tobisch, A. Boltz, G. Garhofer, R. Told, K. Witkowska, and L. Schmetterer, “Psychophysical Vision Simulation of Diffractive Bifocal and Trifocal Intraocular Lenses,” Transl. Vis. Sci. Technol. 5(5), 13 (2016).
[Crossref]

Dubis, A. M.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref]

Dubra, A.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref]

Duran, V.

Ehrenstein, A.

W. H. Ehrenstein and A. Ehrenstein, “Psychophysical methods,” in Modern techniques in neuroscience research, U. Windhorst and H. Johansson, eds. (Springer, 1999), pp. 1211–1240.

Ehrenstein, W. H.

W. H. Ehrenstein and A. Ehrenstein, “Psychophysical methods,” in Modern techniques in neuroscience research, U. Windhorst and H. Johansson, eds. (Springer, 1999), pp. 1211–1240.

Elsner, A.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref]

Fang, Z. P.

Fernandez, E. J.

C. Schwarz, P. M. Prieto, E. J. Fernandez, and P. Artal, “Binocular adaptive optics vision analyzer with full control over the complex pupil functions,” Opt. Lett. 36(24), 4779–4781 (2011).
[Crossref]

J. Tabernero, C. Schwarz, E. J. Fernandez, and P. Artal, “Binocular visual simulation of a corneal inlay to increase depth of focus,” Invest. Ophthalmol. Visual Sci. 52(8), 5273–5277 (2011).
[Crossref]

E. J. Fernandez, P. M. Prieto, and P. Artal, “Binocular adaptive optics visual simulator,” Opt. Lett. 34(17), 2628–2630 (2009).
[Crossref]

P. A. Piers, E. J. Fernandez, S. Manzanera, S. Norrby, and P. Artal, “Adaptive optics simulation of intraocular lenses with modified spherical aberration,” Invest. Ophthalmol. Visual Sci. 45(12), 4601–4610 (2004).
[Crossref]

Gambra, E.

C. Dorronsoro, X. Barcala, E. Gambra, V. Akondi, L. Sawides, Y. Marrakchi, V. Rodriguez-Lopez, C. Benedi-Garcia, M. Vinas, E. Lage, and S. Marcos, “Tunable lenses: dynamic characterization and fine-tuned control for high-speed applications,” Opt. Express 27(3), 2085–2100 (2019).
[Crossref]

V. Akondi, C. Dorronsoro, E. Gambra, and S. Marcos, “Temporal multiplexing to simulate multifocal intraocular lenses: theoretical considerations,” Biomed. Opt. Express 8(7), 3410–3425 (2017).
[Crossref]

P. de Gracia, C. Dorronsoro, E. Gambra, G. Marin, M. Hernandez, and S. Marcos, “Combining coma with astigmatism can improve retinal image over astigmatism alone,” Vision Res. 50(19), 2008–2014 (2010).
[Crossref]

S. Marcos, L. Sawides, E. Gambra, and C. Dorronsoro, “Influence of adaptive-optics ocular aberration correction on visual acuity at different luminances and contrast polarities,” J. Vis. 8(13), 1 (2008).
[Crossref]

Garhofer, G.

W. Brezna, K. Lux, N. Dragostinoff, C. Krutzler, N. Plank, R. Tobisch, A. Boltz, G. Garhofer, R. Told, K. Witkowska, and L. Schmetterer, “Psychophysical Vision Simulation of Diffractive Bifocal and Trifocal Intraocular Lenses,” Transl. Vis. Sci. Technol. 5(5), 13 (2016).
[Crossref]

Garzon, N.

M. Vinas, A. Gonzalez-Ramos, C. Dorronsoro, V. Akondi, N. Garzon, F. Poyales, and S. Marcos, “In Vivo Measurement of Longitudinal Chromatic Aberration in Patients Implanted With Trifocal Diffractive Intraocular Lenses,” J. Refract. Surg. 33(11), 736–742 (2017).
[Crossref]

F. Poyales, N. Garzon, J. J. Rozema, C. Romero, and B. O. de Zarate, “Stability of a Novel Intraocular Lens Design: Comparison of Two Trifocal Lenses,” J. Refract. Surg. 32(6), 394–402 (2016).
[Crossref]

Gatinel, D.

D. Gatinel and Y. Houbrechts, “Comparison of bifocal and trifocal diffractive and refractive intraocular lenses using an optical bench,” J. Cataract Refractive Surg. 39(7), 1093–1099 (2013).
[Crossref]

D. Gatinel, C. Pagnoulle, Y. Houbrechts, and L. Gobin, “Design and qualification of a diffractive trifocal optical profile for intraocular lenses,” J. Cataract Refractive Surg. 37(11), 2060–2067 (2011).
[Crossref]

Giles, M. K.

Giner, A.

J. Pujol, M. Aldaba, A. Giner, J. Arasa, and S. O. Luque, “Visual performance evaluation of a new multifocal intraocular lens design before surgery,” Invest. Ophthalmol. Vis. Sci. 55(13), 3752 (2014).

Gobin, L.

D. Gatinel, C. Pagnoulle, Y. Houbrechts, and L. Gobin, “Design and qualification of a diffractive trifocal optical profile for intraocular lenses,” J. Cataract Refractive Surg. 37(11), 2060–2067 (2011).
[Crossref]

Gonzalez, V.

M. Vinas, C. Dorronsoro, V. Gonzalez, D. Cortes, A. Radhakrishnan, and S. Marcos, “Testing vision with angular and radial multifocal designs using Adaptive Optics,” Vision Res. 132, 85–96 (2017).
[Crossref]

Gonzalez-Ramos, A.

M. Vinas, A. Gonzalez-Ramos, C. Dorronsoro, V. Akondi, N. Garzon, F. Poyales, and S. Marcos, “In Vivo Measurement of Longitudinal Chromatic Aberration in Patients Implanted With Trifocal Diffractive Intraocular Lenses,” J. Refract. Surg. 33(11), 736–742 (2017).
[Crossref]

Gundersen, K. G.

K. G. Gundersen and R. Potvin, “Trifocal intraocular lenses: a comparison of the visual performance and quality of vision provided by two different lens designs,” Clin. Ophthalmol. 11, 1081–1087 (2017).
[Crossref]

Hampson, K. M.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref]

Hernandez, M.

M. Vinas, P. de Gracia, C. Dorronsoro, L. Sawides, G. Marin, M. Hernandez, and S. Marcos, “Astigmatism impact on visual performance: meridional and adaptational effects,” Optom. Vis. Sci. 90(12), 1430–1442 (2013).
[Crossref]

P. de Gracia, C. Dorronsoro, E. Gambra, G. Marin, M. Hernandez, and S. Marcos, “Combining coma with astigmatism can improve retinal image over astigmatism alone,” Vision Res. 50(19), 2008–2014 (2010).
[Crossref]

Hervella, L.

E. A. Villegas, S. Manzanera, C. M. Lago, L. Hervella, L. Sawides, and P. Artal, “Effect of Crystalline Lens Aberrations on Adaptive Optics Simulation of Intraocular Lenses,” J. Refract. Surg. 35(2), 126–131 (2019).
[Crossref]

Holladay, J. T.

J. T. Holladay, “Proper method for calculating average visual acuity,” J. Refract. Surg. 13, 388–391 (1997).
[Crossref]

Houbrechts, Y.

D. Gatinel and Y. Houbrechts, “Comparison of bifocal and trifocal diffractive and refractive intraocular lenses using an optical bench,” J. Cataract Refractive Surg. 39(7), 1093–1099 (2013).
[Crossref]

D. Gatinel, C. Pagnoulle, Y. Houbrechts, and L. Gobin, “Design and qualification of a diffractive trifocal optical profile for intraocular lenses,” J. Cataract Refractive Surg. 37(11), 2060–2067 (2011).
[Crossref]

Hunter, J.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref]

Ivankovic, B.

R. Barraquer, L. Pinilla Cortés, M. Allende, G. Montenegro, B. Ivankovic, J. D’Antin, H. Martínez Osorio, and R. Michael, “Validation of the Nuclear Cataract Grading System BCN 10,” Ophthalmic Res. 57(4), 247–251 (2017).
[Crossref]

Jaroszewicz, Z.

Jimenez-Alfaro, I.

V. Akondi, P. Perez-Merino, E. Martinez-Enriquez, C. Dorronsoro, N. Alejandre, I. Jimenez-Alfaro, and S. Marcos, “Evaluation of the True Wavefront Aberrations in Eyes Implanted With a Rotationally Asymmetric Multifocal Intraocular Lens,” J. Refract. Surg. 33(4), 257–265 (2017).
[Crossref]

Jonnal, R.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref]

Krutzler, C.

W. Brezna, K. Lux, N. Dragostinoff, C. Krutzler, N. Plank, R. Tobisch, A. Boltz, G. Garhofer, R. Told, K. Witkowska, and L. Schmetterer, “Psychophysical Vision Simulation of Diffractive Bifocal and Trifocal Intraocular Lenses,” Transl. Vis. Sci. Technol. 5(5), 13 (2016).
[Crossref]

Lage, E.

Lago, C. M.

E. A. Villegas, S. Manzanera, C. M. Lago, L. Hervella, L. Sawides, and P. Artal, “Effect of Crystalline Lens Aberrations on Adaptive Optics Simulation of Intraocular Lenses,” J. Refract. Surg. 35(2), 126–131 (2019).
[Crossref]

Lancis, J.

LaVilla, E.

Legras, R.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref]

Li, X.

Lindacher, J. M.

Love, G. D.

Lundstrom, L.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref]

Luque, S.

S. Luque and J. Pujol, “Method and system for simulating/emulating vision via intraocular devices or lenses prior to surgery,” WO2012052585A1 (2012 2012).

Luque, S. O.

J. Pujol, M. Aldaba, A. Giner, J. Arasa, and S. O. Luque, “Visual performance evaluation of a new multifocal intraocular lens design before surgery,” Invest. Ophthalmol. Vis. Sci. 55(13), 3752 (2014).

Lux, K.

W. Brezna, K. Lux, N. Dragostinoff, C. Krutzler, N. Plank, R. Tobisch, A. Boltz, G. Garhofer, R. Told, K. Witkowska, and L. Schmetterer, “Psychophysical Vision Simulation of Diffractive Bifocal and Trifocal Intraocular Lenses,” Transl. Vis. Sci. Technol. 5(5), 13 (2016).
[Crossref]

Madrid-Costa, D.

D. Madrid-Costa, C. Perez-Vives, J. Ruiz-Alcocer, C. Albarran-Diego, and R. Montes-Mico, “Visual simulation through different intraocular lenses in patients with previous myopic corneal ablation using adaptive optics: effect of tilt and decentration,” J. Cataract Refractive Surg. 38(5), 774–786 (2012).
[Crossref]

Manzanera, S.

E. A. Villegas, S. Manzanera, C. M. Lago, L. Hervella, L. Sawides, and P. Artal, “Effect of Crystalline Lens Aberrations on Adaptive Optics Simulation of Intraocular Lenses,” J. Refract. Surg. 35(2), 126–131 (2019).
[Crossref]

S. Manzanera and P. Artal, “Minimum change in spherical aberration that can be perceived,” Biomed. Opt. Express 7(9), 3471–3477 (2016).
[Crossref]

C. Schwarz, C. Canovas, S. Manzanera, H. Weeber, P. M. Prieto, P. Piers, and P. Artal, “Binocular visual acuity for the correction of spherical aberration in polychromatic and monochromatic light,” J. Vis. 14(2), 8 (2014).
[Crossref]

S. Manzanera, P. M. Prieto, D. B. Ayala, J. M. Lindacher, and P. Artal, “Liquid crystal Adaptive Optics Visual Simulator: Application to testing and design of ophthalmic optical elements,” Opt. Express 15(24), 16177–16188 (2007).
[Crossref]

P. A. Piers, E. J. Fernandez, S. Manzanera, S. Norrby, and P. Artal, “Adaptive optics simulation of intraocular lenses with modified spherical aberration,” Invest. Ophthalmol. Visual Sci. 45(12), 4601–4610 (2004).
[Crossref]

Marcos, S.

C. Dorronsoro, X. Barcala, E. Gambra, V. Akondi, L. Sawides, Y. Marrakchi, V. Rodriguez-Lopez, C. Benedi-Garcia, M. Vinas, E. Lage, and S. Marcos, “Tunable lenses: dynamic characterization and fine-tuned control for high-speed applications,” Opt. Express 27(3), 2085–2100 (2019).
[Crossref]

M. Vinas, C. Benedi-Garcia, S. Aissati, D. Pascual, V. Akondi, C. Dorronsoro, and S. Marcos, “Visual simulators replicate vision with multifocal lenses,” Sci. Rep. 9(1), 1539 (2019).
[Crossref]

M. Vinas, C. Dorronsoro, V. Gonzalez, D. Cortes, A. Radhakrishnan, and S. Marcos, “Testing vision with angular and radial multifocal designs using Adaptive Optics,” Vision Res. 132, 85–96 (2017).
[Crossref]

V. Akondi, P. Perez-Merino, E. Martinez-Enriquez, C. Dorronsoro, N. Alejandre, I. Jimenez-Alfaro, and S. Marcos, “Evaluation of the True Wavefront Aberrations in Eyes Implanted With a Rotationally Asymmetric Multifocal Intraocular Lens,” J. Refract. Surg. 33(4), 257–265 (2017).
[Crossref]

M. Vinas, A. Gonzalez-Ramos, C. Dorronsoro, V. Akondi, N. Garzon, F. Poyales, and S. Marcos, “In Vivo Measurement of Longitudinal Chromatic Aberration in Patients Implanted With Trifocal Diffractive Intraocular Lenses,” J. Refract. Surg. 33(11), 736–742 (2017).
[Crossref]

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref]

M. Vinas, C. Dorronsoro, A. Radhakrishnan, C. Benedi-Garcia, E. LaVilla, J. Schwiegerling, and S. Marcos, “Comparison of vision through surface modulated and spatial light modulated multifocal optics,” Biomed. Opt. Express 8(4), 2055–2068 (2017).
[Crossref]

V. Akondi, C. Dorronsoro, E. Gambra, and S. Marcos, “Temporal multiplexing to simulate multifocal intraocular lenses: theoretical considerations,” Biomed. Opt. Express 8(7), 3410–3425 (2017).
[Crossref]

C. Dorronsoro, A. Radhakrishnan, J. R. Alonso-Sanz, D. Pascual, M. Velasco-Ocana, P. Perez-Merino, and S. Marcos, “Portable simultaneous vision device to simulate multifocal corrections,” Optica 3(8), 918–924 (2016).
[Crossref]

A. Radhakrishnan, C. Dorronsoro, and S. Marcos, “Differences in visual quality with orientation of a rotationally asymmetric bifocal intraocular lens design,” J. Cataract Refractive Surg. 42(9), 1276–1287 (2016).
[Crossref]

M. Vinas, C. Dorronsoro, D. Cortes, D. Pascual, and S. Marcos, “Longitudinal chromatic aberration of the human eye in the visible and near infrared from wavefront sensing, double-pass and psychophysics,” Biomed. Opt. Express 6(3), 948–962 (2015).
[Crossref]

P. de Gracia, C. Dorronsoro, A. Sanchez-Gonzalez, L. Sawides, and S. Marcos, “Experimental simulation of simultaneous vision,” Invest. Ophthalmol. Visual Sci. 54(1), 415–422 (2013).
[Crossref]

M. Vinas, P. de Gracia, C. Dorronsoro, L. Sawides, G. Marin, M. Hernandez, and S. Marcos, “Astigmatism impact on visual performance: meridional and adaptational effects,” Optom. Vis. Sci. 90(12), 1430–1442 (2013).
[Crossref]

M. Vinas, L. Sawides, P. de Gracia, and S. Marcos, “Perceptual adaptation to the correction of natural astigmatism,” PLoS One 7(9), e46361 (2012).
[Crossref]

P. de Gracia, C. Dorronsoro, E. Gambra, G. Marin, M. Hernandez, and S. Marcos, “Combining coma with astigmatism can improve retinal image over astigmatism alone,” Vision Res. 50(19), 2008–2014 (2010).
[Crossref]

S. Marcos, L. Sawides, E. Gambra, and C. Dorronsoro, “Influence of adaptive-optics ocular aberration correction on visual acuity at different luminances and contrast polarities,” J. Vis. 8(13), 1 (2008).
[Crossref]

Marin, G.

M. Vinas, P. de Gracia, C. Dorronsoro, L. Sawides, G. Marin, M. Hernandez, and S. Marcos, “Astigmatism impact on visual performance: meridional and adaptational effects,” Optom. Vis. Sci. 90(12), 1430–1442 (2013).
[Crossref]

P. de Gracia, C. Dorronsoro, E. Gambra, G. Marin, M. Hernandez, and S. Marcos, “Combining coma with astigmatism can improve retinal image over astigmatism alone,” Vision Res. 50(19), 2008–2014 (2010).
[Crossref]

Marrakchi, Y.

Marsack, J. D.

J. D. Marsack, L. N. Thibos, and R. A. Applegate, “Metrics of optical quality derived from wave aberrations predict visual performance,” J. Vis. 4(4), 8–328 (2004).
[Crossref]

Martínez Osorio, H.

R. Barraquer, L. Pinilla Cortés, M. Allende, G. Montenegro, B. Ivankovic, J. D’Antin, H. Martínez Osorio, and R. Michael, “Validation of the Nuclear Cataract Grading System BCN 10,” Ophthalmic Res. 57(4), 247–251 (2017).
[Crossref]

Martinez-Cuenca, R.

Martinez-Enriquez, E.

V. Akondi, P. Perez-Merino, E. Martinez-Enriquez, C. Dorronsoro, N. Alejandre, I. Jimenez-Alfaro, and S. Marcos, “Evaluation of the True Wavefront Aberrations in Eyes Implanted With a Rotationally Asymmetric Multifocal Intraocular Lens,” J. Refract. Surg. 33(4), 257–265 (2017).
[Crossref]

Martinez-Leon, L.

Merigan, W. H.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref]

Metha, A.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref]

Michael, R.

R. Barraquer, L. Pinilla Cortés, M. Allende, G. Montenegro, B. Ivankovic, J. D’Antin, H. Martínez Osorio, and R. Michael, “Validation of the Nuclear Cataract Grading System BCN 10,” Ophthalmic Res. 57(4), 247–251 (2017).
[Crossref]

Miller, D. T.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref]

Montenegro, G.

R. Barraquer, L. Pinilla Cortés, M. Allende, G. Montenegro, B. Ivankovic, J. D’Antin, H. Martínez Osorio, and R. Michael, “Validation of the Nuclear Cataract Grading System BCN 10,” Ophthalmic Res. 57(4), 247–251 (2017).
[Crossref]

Montes-Mico, R.

D. Madrid-Costa, C. Perez-Vives, J. Ruiz-Alcocer, C. Albarran-Diego, and R. Montes-Mico, “Visual simulation through different intraocular lenses in patients with previous myopic corneal ablation using adaptive optics: effect of tilt and decentration,” J. Cataract Refractive Surg. 38(5), 774–786 (2012).
[Crossref]

Nistor, I. C.

Norrby, S.

P. A. Piers, E. J. Fernandez, S. Manzanera, S. Norrby, and P. Artal, “Adaptive optics simulation of intraocular lenses with modified spherical aberration,” Invest. Ophthalmol. Visual Sci. 45(12), 4601–4610 (2004).
[Crossref]

Ong, L. S.

Pagnoulle, C.

D. Gatinel, C. Pagnoulle, Y. Houbrechts, and L. Gobin, “Design and qualification of a diffractive trifocal optical profile for intraocular lenses,” J. Cataract Refractive Surg. 37(11), 2060–2067 (2011).
[Crossref]

Palczewska, G.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref]

Paques, M.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref]

Pascual, D.

Perez-Merino, P.

V. Akondi, P. Perez-Merino, E. Martinez-Enriquez, C. Dorronsoro, N. Alejandre, I. Jimenez-Alfaro, and S. Marcos, “Evaluation of the True Wavefront Aberrations in Eyes Implanted With a Rotationally Asymmetric Multifocal Intraocular Lens,” J. Refract. Surg. 33(4), 257–265 (2017).
[Crossref]

C. Dorronsoro, A. Radhakrishnan, J. R. Alonso-Sanz, D. Pascual, M. Velasco-Ocana, P. Perez-Merino, and S. Marcos, “Portable simultaneous vision device to simulate multifocal corrections,” Optica 3(8), 918–924 (2016).
[Crossref]

Perez-Vives, C.

D. Madrid-Costa, C. Perez-Vives, J. Ruiz-Alcocer, C. Albarran-Diego, and R. Montes-Mico, “Visual simulation through different intraocular lenses in patients with previous myopic corneal ablation using adaptive optics: effect of tilt and decentration,” J. Cataract Refractive Surg. 38(5), 774–786 (2012).
[Crossref]

Piers, P.

C. Schwarz, C. Canovas, S. Manzanera, H. Weeber, P. M. Prieto, P. Piers, and P. Artal, “Binocular visual acuity for the correction of spherical aberration in polychromatic and monochromatic light,” J. Vis. 14(2), 8 (2014).
[Crossref]

Piers, P. A.

P. A. Piers, E. J. Fernandez, S. Manzanera, S. Norrby, and P. Artal, “Adaptive optics simulation of intraocular lenses with modified spherical aberration,” Invest. Ophthalmol. Visual Sci. 45(12), 4601–4610 (2004).
[Crossref]

Pinilla Cortés, L.

R. Barraquer, L. Pinilla Cortés, M. Allende, G. Montenegro, B. Ivankovic, J. D’Antin, H. Martínez Osorio, and R. Michael, “Validation of the Nuclear Cataract Grading System BCN 10,” Ophthalmic Res. 57(4), 247–251 (2017).
[Crossref]

Plank, N.

W. Brezna, K. Lux, N. Dragostinoff, C. Krutzler, N. Plank, R. Tobisch, A. Boltz, G. Garhofer, R. Told, K. Witkowska, and L. Schmetterer, “Psychophysical Vision Simulation of Diffractive Bifocal and Trifocal Intraocular Lenses,” Transl. Vis. Sci. Technol. 5(5), 13 (2016).
[Crossref]

Potvin, R.

K. G. Gundersen and R. Potvin, “Trifocal intraocular lenses: a comparison of the visual performance and quality of vision provided by two different lens designs,” Clin. Ophthalmol. 11, 1081–1087 (2017).
[Crossref]

Poyales, F.

M. Vinas, A. Gonzalez-Ramos, C. Dorronsoro, V. Akondi, N. Garzon, F. Poyales, and S. Marcos, “In Vivo Measurement of Longitudinal Chromatic Aberration in Patients Implanted With Trifocal Diffractive Intraocular Lenses,” J. Refract. Surg. 33(11), 736–742 (2017).
[Crossref]

F. Poyales, N. Garzon, J. J. Rozema, C. Romero, and B. O. de Zarate, “Stability of a Novel Intraocular Lens Design: Comparison of Two Trifocal Lenses,” J. Refract. Surg. 32(6), 394–402 (2016).
[Crossref]

Prieto, P. M.

Pujol, J.

J. Pujol, M. Aldaba, A. Giner, J. Arasa, and S. O. Luque, “Visual performance evaluation of a new multifocal intraocular lens design before surgery,” Invest. Ophthalmol. Vis. Sci. 55(13), 3752 (2014).

S. Luque and J. Pujol, “Method and system for simulating/emulating vision via intraocular devices or lenses prior to surgery,” WO2012052585A1 (2012 2012).

Radhakrishnan, A.

M. Vinas, C. Dorronsoro, V. Gonzalez, D. Cortes, A. Radhakrishnan, and S. Marcos, “Testing vision with angular and radial multifocal designs using Adaptive Optics,” Vision Res. 132, 85–96 (2017).
[Crossref]

M. Vinas, C. Dorronsoro, A. Radhakrishnan, C. Benedi-Garcia, E. LaVilla, J. Schwiegerling, and S. Marcos, “Comparison of vision through surface modulated and spatial light modulated multifocal optics,” Biomed. Opt. Express 8(4), 2055–2068 (2017).
[Crossref]

C. Dorronsoro, A. Radhakrishnan, J. R. Alonso-Sanz, D. Pascual, M. Velasco-Ocana, P. Perez-Merino, and S. Marcos, “Portable simultaneous vision device to simulate multifocal corrections,” Optica 3(8), 918–924 (2016).
[Crossref]

A. Radhakrishnan, C. Dorronsoro, and S. Marcos, “Differences in visual quality with orientation of a rotationally asymmetric bifocal intraocular lens design,” J. Cataract Refractive Surg. 42(9), 1276–1287 (2016).
[Crossref]

Rodriguez-Lopez, V.

Romero, C.

F. Poyales, N. Garzon, J. J. Rozema, C. Romero, and B. O. de Zarate, “Stability of a Novel Intraocular Lens Design: Comparison of Two Trifocal Lenses,” J. Refract. Surg. 32(6), 394–402 (2016).
[Crossref]

Rozema, J. J.

F. Poyales, N. Garzon, J. J. Rozema, C. Romero, and B. O. de Zarate, “Stability of a Novel Intraocular Lens Design: Comparison of Two Trifocal Lenses,” J. Refract. Surg. 32(6), 394–402 (2016).
[Crossref]

Ruiz-Alcocer, J.

D. Madrid-Costa, C. Perez-Vives, J. Ruiz-Alcocer, C. Albarran-Diego, and R. Montes-Mico, “Visual simulation through different intraocular lenses in patients with previous myopic corneal ablation using adaptive optics: effect of tilt and decentration,” J. Cataract Refractive Surg. 38(5), 774–786 (2012).
[Crossref]

Sanchez-Gonzalez, A.

P. de Gracia, C. Dorronsoro, A. Sanchez-Gonzalez, L. Sawides, and S. Marcos, “Experimental simulation of simultaneous vision,” Invest. Ophthalmol. Visual Sci. 54(1), 415–422 (2013).
[Crossref]

Sawides, L.

C. Dorronsoro, X. Barcala, E. Gambra, V. Akondi, L. Sawides, Y. Marrakchi, V. Rodriguez-Lopez, C. Benedi-Garcia, M. Vinas, E. Lage, and S. Marcos, “Tunable lenses: dynamic characterization and fine-tuned control for high-speed applications,” Opt. Express 27(3), 2085–2100 (2019).
[Crossref]

E. A. Villegas, S. Manzanera, C. M. Lago, L. Hervella, L. Sawides, and P. Artal, “Effect of Crystalline Lens Aberrations on Adaptive Optics Simulation of Intraocular Lenses,” J. Refract. Surg. 35(2), 126–131 (2019).
[Crossref]

M. Vinas, P. de Gracia, C. Dorronsoro, L. Sawides, G. Marin, M. Hernandez, and S. Marcos, “Astigmatism impact on visual performance: meridional and adaptational effects,” Optom. Vis. Sci. 90(12), 1430–1442 (2013).
[Crossref]

P. de Gracia, C. Dorronsoro, A. Sanchez-Gonzalez, L. Sawides, and S. Marcos, “Experimental simulation of simultaneous vision,” Invest. Ophthalmol. Visual Sci. 54(1), 415–422 (2013).
[Crossref]

M. Vinas, L. Sawides, P. de Gracia, and S. Marcos, “Perceptual adaptation to the correction of natural astigmatism,” PLoS One 7(9), e46361 (2012).
[Crossref]

S. Marcos, L. Sawides, E. Gambra, and C. Dorronsoro, “Influence of adaptive-optics ocular aberration correction on visual acuity at different luminances and contrast polarities,” J. Vis. 8(13), 1 (2008).
[Crossref]

Schallek, J.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref]

Schmetterer, L.

W. Brezna, K. Lux, N. Dragostinoff, C. Krutzler, N. Plank, R. Tobisch, A. Boltz, G. Garhofer, R. Told, K. Witkowska, and L. Schmetterer, “Psychophysical Vision Simulation of Diffractive Bifocal and Trifocal Intraocular Lenses,” Transl. Vis. Sci. Technol. 5(5), 13 (2016).
[Crossref]

Schwarz, C.

C. Schwarz, C. Canovas, S. Manzanera, H. Weeber, P. M. Prieto, P. Piers, and P. Artal, “Binocular visual acuity for the correction of spherical aberration in polychromatic and monochromatic light,” J. Vis. 14(2), 8 (2014).
[Crossref]

J. Tabernero, C. Schwarz, E. J. Fernandez, and P. Artal, “Binocular visual simulation of a corneal inlay to increase depth of focus,” Invest. Ophthalmol. Visual Sci. 52(8), 5273–5277 (2011).
[Crossref]

C. Schwarz, P. M. Prieto, E. J. Fernandez, and P. Artal, “Binocular adaptive optics vision analyzer with full control over the complex pupil functions,” Opt. Lett. 36(24), 4779–4781 (2011).
[Crossref]

Schwiegerling, J.

Sincich, L. C.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref]

Smithson, H. E.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref]

Tabernero, J.

J. Tabernero, C. Schwarz, E. J. Fernandez, and P. Artal, “Binocular visual simulation of a corneal inlay to increase depth of focus,” Invest. Ophthalmol. Visual Sci. 52(8), 5273–5277 (2011).
[Crossref]

Thibos, L. N.

J. D. Marsack, L. N. Thibos, and R. A. Applegate, “Metrics of optical quality derived from wave aberrations predict visual performance,” J. Vis. 4(4), 8–328 (2004).
[Crossref]

Tobisch, R.

W. Brezna, K. Lux, N. Dragostinoff, C. Krutzler, N. Plank, R. Tobisch, A. Boltz, G. Garhofer, R. Told, K. Witkowska, and L. Schmetterer, “Psychophysical Vision Simulation of Diffractive Bifocal and Trifocal Intraocular Lenses,” Transl. Vis. Sci. Technol. 5(5), 13 (2016).
[Crossref]

Told, R.

W. Brezna, K. Lux, N. Dragostinoff, C. Krutzler, N. Plank, R. Tobisch, A. Boltz, G. Garhofer, R. Told, K. Witkowska, and L. Schmetterer, “Psychophysical Vision Simulation of Diffractive Bifocal and Trifocal Intraocular Lenses,” Transl. Vis. Sci. Technol. 5(5), 13 (2016).
[Crossref]

Velasco-Ocana, M.

Villegas, E. A.

E. A. Villegas, S. Manzanera, C. M. Lago, L. Hervella, L. Sawides, and P. Artal, “Effect of Crystalline Lens Aberrations on Adaptive Optics Simulation of Intraocular Lenses,” J. Refract. Surg. 35(2), 126–131 (2019).
[Crossref]

Vinas, M.

M. Vinas, C. Benedi-Garcia, S. Aissati, D. Pascual, V. Akondi, C. Dorronsoro, and S. Marcos, “Visual simulators replicate vision with multifocal lenses,” Sci. Rep. 9(1), 1539 (2019).
[Crossref]

C. Dorronsoro, X. Barcala, E. Gambra, V. Akondi, L. Sawides, Y. Marrakchi, V. Rodriguez-Lopez, C. Benedi-Garcia, M. Vinas, E. Lage, and S. Marcos, “Tunable lenses: dynamic characterization and fine-tuned control for high-speed applications,” Opt. Express 27(3), 2085–2100 (2019).
[Crossref]

M. Vinas, C. Dorronsoro, A. Radhakrishnan, C. Benedi-Garcia, E. LaVilla, J. Schwiegerling, and S. Marcos, “Comparison of vision through surface modulated and spatial light modulated multifocal optics,” Biomed. Opt. Express 8(4), 2055–2068 (2017).
[Crossref]

M. Vinas, C. Dorronsoro, V. Gonzalez, D. Cortes, A. Radhakrishnan, and S. Marcos, “Testing vision with angular and radial multifocal designs using Adaptive Optics,” Vision Res. 132, 85–96 (2017).
[Crossref]

M. Vinas, A. Gonzalez-Ramos, C. Dorronsoro, V. Akondi, N. Garzon, F. Poyales, and S. Marcos, “In Vivo Measurement of Longitudinal Chromatic Aberration in Patients Implanted With Trifocal Diffractive Intraocular Lenses,” J. Refract. Surg. 33(11), 736–742 (2017).
[Crossref]

M. Vinas, C. Dorronsoro, D. Cortes, D. Pascual, and S. Marcos, “Longitudinal chromatic aberration of the human eye in the visible and near infrared from wavefront sensing, double-pass and psychophysics,” Biomed. Opt. Express 6(3), 948–962 (2015).
[Crossref]

M. Vinas, P. de Gracia, C. Dorronsoro, L. Sawides, G. Marin, M. Hernandez, and S. Marcos, “Astigmatism impact on visual performance: meridional and adaptational effects,” Optom. Vis. Sci. 90(12), 1430–1442 (2013).
[Crossref]

M. Vinas, L. Sawides, P. de Gracia, and S. Marcos, “Perceptual adaptation to the correction of natural astigmatism,” PLoS One 7(9), e46361 (2012).
[Crossref]

Weeber, H.

C. Schwarz, C. Canovas, S. Manzanera, H. Weeber, P. M. Prieto, P. Piers, and P. Artal, “Binocular visual acuity for the correction of spherical aberration in polychromatic and monochromatic light,” J. Vis. 14(2), 8 (2014).
[Crossref]

Werner, J. S.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref]

Witkowska, K.

W. Brezna, K. Lux, N. Dragostinoff, C. Krutzler, N. Plank, R. Tobisch, A. Boltz, G. Garhofer, R. Told, K. Witkowska, and L. Schmetterer, “Psychophysical Vision Simulation of Diffractive Bifocal and Trifocal Intraocular Lenses,” Transl. Vis. Sci. Technol. 5(5), 13 (2016).
[Crossref]

Yoon, G.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref]

You, Z.

Z. Zhang, Z. You, and D. Chu, “Fundamentals of phase-only liquid crystal on silicon (LCOS) devices,” Light: Sci. Appl. 3(10), e213 (2014).
[Crossref]

Young, L. K.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref]

Zhang, Y.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref]

Zhang, Z.

Z. Zhang, Z. You, and D. Chu, “Fundamentals of phase-only liquid crystal on silicon (LCOS) devices,” Light: Sci. Appl. 3(10), e213 (2014).
[Crossref]

Zhao, L.

Appl. Opt. (2)

Biomed. Opt. Express (4)

Clin. Ophthalmol. (1)

K. G. Gundersen and R. Potvin, “Trifocal intraocular lenses: a comparison of the visual performance and quality of vision provided by two different lens designs,” Clin. Ophthalmol. 11, 1081–1087 (2017).
[Crossref]

Invest. Ophthalmol. Vis. Sci. (1)

J. Pujol, M. Aldaba, A. Giner, J. Arasa, and S. O. Luque, “Visual performance evaluation of a new multifocal intraocular lens design before surgery,” Invest. Ophthalmol. Vis. Sci. 55(13), 3752 (2014).

Invest. Ophthalmol. Visual Sci. (3)

J. Tabernero, C. Schwarz, E. J. Fernandez, and P. Artal, “Binocular visual simulation of a corneal inlay to increase depth of focus,” Invest. Ophthalmol. Visual Sci. 52(8), 5273–5277 (2011).
[Crossref]

P. de Gracia, C. Dorronsoro, A. Sanchez-Gonzalez, L. Sawides, and S. Marcos, “Experimental simulation of simultaneous vision,” Invest. Ophthalmol. Visual Sci. 54(1), 415–422 (2013).
[Crossref]

P. A. Piers, E. J. Fernandez, S. Manzanera, S. Norrby, and P. Artal, “Adaptive optics simulation of intraocular lenses with modified spherical aberration,” Invest. Ophthalmol. Visual Sci. 45(12), 4601–4610 (2004).
[Crossref]

J. Cataract Refractive Surg. (4)

D. Madrid-Costa, C. Perez-Vives, J. Ruiz-Alcocer, C. Albarran-Diego, and R. Montes-Mico, “Visual simulation through different intraocular lenses in patients with previous myopic corneal ablation using adaptive optics: effect of tilt and decentration,” J. Cataract Refractive Surg. 38(5), 774–786 (2012).
[Crossref]

A. Radhakrishnan, C. Dorronsoro, and S. Marcos, “Differences in visual quality with orientation of a rotationally asymmetric bifocal intraocular lens design,” J. Cataract Refractive Surg. 42(9), 1276–1287 (2016).
[Crossref]

D. Gatinel, C. Pagnoulle, Y. Houbrechts, and L. Gobin, “Design and qualification of a diffractive trifocal optical profile for intraocular lenses,” J. Cataract Refractive Surg. 37(11), 2060–2067 (2011).
[Crossref]

D. Gatinel and Y. Houbrechts, “Comparison of bifocal and trifocal diffractive and refractive intraocular lenses using an optical bench,” J. Cataract Refractive Surg. 39(7), 1093–1099 (2013).
[Crossref]

J. Refract. Surg. (5)

M. Vinas, A. Gonzalez-Ramos, C. Dorronsoro, V. Akondi, N. Garzon, F. Poyales, and S. Marcos, “In Vivo Measurement of Longitudinal Chromatic Aberration in Patients Implanted With Trifocal Diffractive Intraocular Lenses,” J. Refract. Surg. 33(11), 736–742 (2017).
[Crossref]

V. Akondi, P. Perez-Merino, E. Martinez-Enriquez, C. Dorronsoro, N. Alejandre, I. Jimenez-Alfaro, and S. Marcos, “Evaluation of the True Wavefront Aberrations in Eyes Implanted With a Rotationally Asymmetric Multifocal Intraocular Lens,” J. Refract. Surg. 33(4), 257–265 (2017).
[Crossref]

E. A. Villegas, S. Manzanera, C. M. Lago, L. Hervella, L. Sawides, and P. Artal, “Effect of Crystalline Lens Aberrations on Adaptive Optics Simulation of Intraocular Lenses,” J. Refract. Surg. 35(2), 126–131 (2019).
[Crossref]

J. T. Holladay, “Proper method for calculating average visual acuity,” J. Refract. Surg. 13, 388–391 (1997).
[Crossref]

F. Poyales, N. Garzon, J. J. Rozema, C. Romero, and B. O. de Zarate, “Stability of a Novel Intraocular Lens Design: Comparison of Two Trifocal Lenses,” J. Refract. Surg. 32(6), 394–402 (2016).
[Crossref]

J. Vis. (3)

C. Schwarz, C. Canovas, S. Manzanera, H. Weeber, P. M. Prieto, P. Piers, and P. Artal, “Binocular visual acuity for the correction of spherical aberration in polychromatic and monochromatic light,” J. Vis. 14(2), 8 (2014).
[Crossref]

S. Marcos, L. Sawides, E. Gambra, and C. Dorronsoro, “Influence of adaptive-optics ocular aberration correction on visual acuity at different luminances and contrast polarities,” J. Vis. 8(13), 1 (2008).
[Crossref]

J. D. Marsack, L. N. Thibos, and R. A. Applegate, “Metrics of optical quality derived from wave aberrations predict visual performance,” J. Vis. 4(4), 8–328 (2004).
[Crossref]

Light: Sci. Appl. (1)

Z. Zhang, Z. You, and D. Chu, “Fundamentals of phase-only liquid crystal on silicon (LCOS) devices,” Light: Sci. Appl. 3(10), e213 (2014).
[Crossref]

Ophthalmic Physiol. Opt. (1)

W. N. Charman, “Developments in the correction of presbyopia II: surgical approaches,” Ophthalmic Physiol. Opt. 34(4), 397–426 (2014).
[Crossref]

Ophthalmic Res. (1)

R. Barraquer, L. Pinilla Cortés, M. Allende, G. Montenegro, B. Ivankovic, J. D’Antin, H. Martínez Osorio, and R. Michael, “Validation of the Nuclear Cataract Grading System BCN 10,” Ophthalmic Res. 57(4), 247–251 (2017).
[Crossref]

Opt. Express (3)

Opt. Lett. (4)

Optica (1)

Optom. Vis. Sci. (1)

M. Vinas, P. de Gracia, C. Dorronsoro, L. Sawides, G. Marin, M. Hernandez, and S. Marcos, “Astigmatism impact on visual performance: meridional and adaptational effects,” Optom. Vis. Sci. 90(12), 1430–1442 (2013).
[Crossref]

PLoS One (1)

M. Vinas, L. Sawides, P. de Gracia, and S. Marcos, “Perceptual adaptation to the correction of natural astigmatism,” PLoS One 7(9), e46361 (2012).
[Crossref]

Sci. Rep. (1)

M. Vinas, C. Benedi-Garcia, S. Aissati, D. Pascual, V. Akondi, C. Dorronsoro, and S. Marcos, “Visual simulators replicate vision with multifocal lenses,” Sci. Rep. 9(1), 1539 (2019).
[Crossref]

Spat Vis (1)

D. H. Brainard, “The Psychophysics Toolbox,” Spat Vis 10(4), 433–436 (1997).
[Crossref]

Transl. Vis. Sci. Technol. (1)

W. Brezna, K. Lux, N. Dragostinoff, C. Krutzler, N. Plank, R. Tobisch, A. Boltz, G. Garhofer, R. Told, K. Witkowska, and L. Schmetterer, “Psychophysical Vision Simulation of Diffractive Bifocal and Trifocal Intraocular Lenses,” Transl. Vis. Sci. Technol. 5(5), 13 (2016).
[Crossref]

Vision Res. (3)

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref]

M. Vinas, C. Dorronsoro, V. Gonzalez, D. Cortes, A. Radhakrishnan, and S. Marcos, “Testing vision with angular and radial multifocal designs using Adaptive Optics,” Vision Res. 132, 85–96 (2017).
[Crossref]

P. de Gracia, C. Dorronsoro, E. Gambra, G. Marin, M. Hernandez, and S. Marcos, “Combining coma with astigmatism can improve retinal image over astigmatism alone,” Vision Res. 50(19), 2008–2014 (2010).
[Crossref]

Other (2)

S. Luque and J. Pujol, “Method and system for simulating/emulating vision via intraocular devices or lenses prior to surgery,” WO2012052585A1 (2012 2012).

W. H. Ehrenstein and A. Ehrenstein, “Psychophysical methods,” in Modern techniques in neuroscience research, U. Windhorst and H. Johansson, eds. (Springer, 1999), pp. 1211–1240.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Visual simulation platforms. (A) AO-based visual simulator incorporating the SLM and SimVis in the corresponding conjugate pupil planes of the AO system. MIOL was simulated using a phase map and time coefficients for the SLM and SimVis, respectively. Measurements were performed monocularly at 555 nm. (B) SimVis2Eyes_clinical visual simulator based on SimVis technology, using time coefficients, working binocularly and with the stimulus in white light. (C) MIOL implanted in the eight patients. Post-operatively, measurements were performed monocularly (using a monochromatically illuminated green target projected in a DLP projector subtending a 1.62-deg field in an AO system) and binocularly in white light (ETDRS target at distance, subtending a 20 deg field).
Fig. 2.
Fig. 2. TF VA obtained through simulations before surgery. (A) TF VA through AO_visual simulations (monocular, monochromatic) using the SLM (pink lines) and the SimVis (green lines), as well as VA for best subjective focus with no lens (black dots). Blue bars show the difference between SLM and SimVis. (B) TF VA through SimVis2Eyes (binocular, polychromatic) visual simulations (orange lines), and the SimVis (green lines) (monocular, monochromatic). Blue bars show the difference between SimVis and SimVis2Eyes. Black dots show the VA for best subjective focus with no lens with the SimVis2Eyes.
Fig. 3.
Fig. 3. Averaged TF VA obtained through simulations before surgery with all simulators. (A) TF VA pre-operatively through AO_visual simulations (monocular, monochromatic) using the SLM (pink lines) and the SimVis (green lines). (B) TF VA pre-operatively through SimVis (green lines) (monocular, monochromatic) & SimVis2Eyes (orange lines) (binocular, polychromatic) visual simulations. Blue bars in each graph represent the VA difference (SLM – SimVis; SimVis2Eyes – SimVis). The average error (standard deviation of repeated measurements, averaged across patients) was 0.058 ± 0.009 for SimVis, 0.086 ± 0.012 for SLM and 0.068 ± 0.009 for SimVis2Eyes.
Fig. 4.
Fig. 4. TF VA obtained before and after surgery. (A) TF VA measured with the AO-based platform (monocular, monochromatic) through visual simulations before (green solid lines) and after the surgery (green dashed lines). Blue bars show differences between pre- and post-surgery measurements. (B) TF VA measured with the SimVis2Eyes platform (binocular, polychromatic) through visual simulations before (orange solid lines) and after the surgery (orange dashed lines). Blue bars show differences between pre- and post-surgery measurements. The average error (standard deviation of repeated measurements, averaged across all patients) for the simulations is indicated in Fig. 3, and for the post-operative measurements with the MIOL was 0.088 ± 0.010 in A and 0.073 ± 0.011 in B.
Fig. 5.
Fig. 5. Averaged TF VA obtained before and after surgery for clear crystalline lens and cataract patients. (A) TF VA measured with the AO-based platform through visual simulations (green solid lines) and after the surgery (green dashed lines). Blue bars show differences between pre- and post-surgery measurements. (B) TF VA measured with the SimVis2Eyes platform through visual simulations (orange solid lines) and after the surgery (orange dashed lines). Blue bars show differences between pre- and post-surgery measurements. The average error bar (standard deviation across patients) for the simulations is indicated in Fig. 3, and for the post-operative measurements with the MIOL in Fig. 4. The average error bar (standard deviation across patients and platforms) for SimVis2Eyes pre-operatively was 0.06 ± 0.01 and 0.05 ± 0.02, and for MIOLs post-operatively was 0.07 ± 0.01 and 0.05 ± 0.01, for clear lens and cataract patients, respectively
Fig. 6.
Fig. 6. Post-operative monochromatic-monocular TF VA vs. Polychromatic-binocular TF VA. TF VA after surgery, with implanted trifocal diffractive IOL, measured monocularly and with a monochromatic stimulus (green dashed lines) and binocularly and with a white-light stimulus (orange dashed lines), for each patients, and averaged across patients. Blue bars show differences between both conditions. Average errors are indicated in Fig. 4.

Tables (1)

Tables Icon

Table 1. Pre- and post-operative clinical data of the patients of the study. M and F stand for male/female, respectively; age in years; R and L stand for measured right eye/left eye; 1refractive error: Sph, spherical error; Cyl (Diopters), cylinder (Diopters); Axis(degrees); 2BCVA, Best Corrected Visual Acuity and UCVA, Uncorrected Visual Acuity, measured under photopic lighting conditions with ETDRS (Early Treatment Diabetic Retinopathy Study, ETDRS; Precision Vision, Woodstock, IL, USA) chart; 3Cataract grade (according to BCN 10 grading system [31], using frontal and cross-sectional slit-lamp lens images, ranging from N0 (clear lens) to N10 (dark lens); Prelex stands for Presbyopia Lens Exchange (clear lens). Shading indicates measured eye for each patient.