Abstract

A novel optical coherence tomography system that can perform scanless two dimensional imaging without Fourier transform is proposed and demonstrated. In the system, a convex cylindrical mirror generates an extended spatial distribution of optical delay in the reference arm and a cylindrical lens is used to form a focused line beam in the sample arm. A charge-coupled device camera captures the two dimensional tomographic image of a sample in a snap-shot manner. Due to its simple configuration and operation, the system is suitable for developing a compact device for tomographic imaging and measurement.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Three-dimensional imaging by ultrahigh-speed axial-lateral parallel time domain optical coherence tomography

Yuuki Watanabe, Kazuhiko Yamada, and Manabu Sato
Opt. Express 14(12) 5201-5209 (2006)

High-speed linear detection time domain optical coherence tomography with reflective grating-generated spatial reference delay

Yuuki Watanabe, Fumitoshi Sajima, Toshiki Itagaki, Kei Watanabe, and Yuuki Shuto
Appl. Opt. 48(18) 3401-3406 (2009)

Single-shot two-dimensional full-range optical coherence tomography achieved by dispersion control

S. Witte, M. Baclayon, E. J. G. Peterman, R. F. G. Toonen, H. D. Mansvelder, and M. L. Groot
Opt. Express 17(14) 11335-11349 (2009)

References

  • View by:
  • |
  • |
  • |

  1. W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
    [Crossref]
  2. R. Dsouza, J. Won, G. L. Monroy, D. R. Spillman, and S. A. Boppart, “Economical and compact briefcase spectral-domain optical coherence tomography system for primary care and point-of-care applications,” J. Biomed. Opt. 23(09), 1 (2018).
    [Crossref]
  3. A. Pantelopoulos and N. G. Bourbakis, “A survey on wearable sensor-based systems for health monitoring and prognosis,” IEEE Trans. Syst. Man Cybern. Part C 40(1), 1–12 (2010).
    [Crossref]
  4. D. Raskovic, T. Martin, and E. Jovanov, “Medical monitoring applications for wearable computing,” Comput. J. 47(4), 495–504 (2004).
    [Crossref]
  5. U. Anliker, J. Beutel, M. Dyer, R. Enzler, P. Lukowicz, L. Thiele, and G. Troster, “A systematic approach to the design of distributed wearable systems,” IEEE Trans. Comput. 53(8), 1017–1033 (2004).
    [Crossref]
  6. N. H. Cho, K. Park, J. Y. Kim, Y. Jung, and J. Kim, “Quantitative assessment of touch-screen panel by nondestructive inspection with three-dimensional real-time display optical coherence tomography,” Opt. Lasers Eng. 68, 50–57 (2015).
    [Crossref]
  7. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref]
  8. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
    [Crossref]
  9. B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral/Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express 16(19), 15149–15169 (2008).
    [Crossref]
  10. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22(5), 340–342 (1997).
    [Crossref]
  11. F. Lexer, C. K. Hitzenberger, A. F. Fercher, and M. Kulhavy, “Wavelength-tuning interferometry of intraocular distances,” Appl. Opt. 36(25), 6548–6553 (1997).
    [Crossref]
  12. M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).
    [Crossref]
  13. R. A. Leitgeb, C. K. Hitzenberger, A. F. Fercher, and T. Bajraszewski, “Phase-shifting algorithm to achieve high-speed long-depth-range probing by frequency-domain optical coherence tomography,” Opt. Lett. 28(22), 2201–2203 (2003).
    [Crossref]
  14. M. Zhang, L. Ma, and P. Yu, “Spatial convolution for mirror image suppression in Fourier domain optical coherence tomography,” Opt. Lett. 42(3), 506–509 (2017).
    [Crossref]
  15. Y. Yasuno, T. Endo, S. Makita, G. Aoki, M. Itoh, and T. Yatagai, “Three-dimensional line-field Fourier domain optical coherence tomography for in vivo dermatological investigation,” J. Biomed. Opt. 11(1), 014014 (2006).
    [Crossref]
  16. E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. Saint-Jalmes, “Full-field optical coherence microscopy,” Opt. Lett. 23(4), 244–246 (1998).
    [Crossref]
  17. C. Dunsby, Y. Gu, and P. M. W. French, “Single-shot phase-stepped wide-field coherence-gated imaging,” Opt. Express 11(2), 105–115 (2003).
    [Crossref]
  18. S. Witte, M. Baclayon, E. J. Peterman, R. F. Toonen, H. D. Mansvelder, and M. L. Groot, “Single-shot two-dimensional full-range optical coherence tomography achieved by dispersion control,” Opt. Express 17(14), 11335–11349 (2009).
    [Crossref]
  19. T. Butler, S. Slepneva, B. O’Shaughnessy, B. Kelleher, D. Goulding, S. P. Hegarty, H.-C. Lyu, K. Karnowski, M. Wojtkowski, and G. Huyet, “Single shot, time-resolved measurement of the coherence properties of OCT swept source lasers,” Opt. Lett. 40(10), 2277–2280 (2015).
    [Crossref]
  20. P. Koch, G. Hüttmann, H. Schleiermacher, J. Eichholz, and E. Koch, “Linear optical coherence tomography system with a downconverted fringe pattern,” Opt. Lett. 29(14), 1644–1646 (2004).
    [Crossref]
  21. T. U. Nguyen, M. C. Pierce, L. Higgins, and T. S. Tkaczyk, “Snapshot 3D optical coherence tomography system using image mapping spectrometry,” Opt. Express 21(11), 13758–13772 (2013).
    [Crossref]
  22. H. M. Subhash, “Full-field and single-shot full-field optical coherence tomography: a novel technique for biomedical imaging applications,” Adv. Opt. Tech. 2012, 1–26 (2012).
    [Crossref]
  23. I. Zeylikovich, A. Gilerson, and R. R. Alfano, “Nonmechanical grating-generated scanning coherence microscopy,” Opt. Lett. 23(23), 1797–1799 (1998).
    [Crossref]
  24. Y. Watanabe, K. Yamada, and M. Sato, “Three-dimensional imaging by ultrahigh-speed axial-lateral parallel time domain optical coherence tomography,” Opt. Express 14(12), 5201–5209 (2006).
    [Crossref]
  25. A. Agrawal, T. J. Pfefer, P. D. Woolliams, P. H. Tomlins, and G. Nehmetallah, “Methods to assess sensitivity of optical coherence tomography systems,” Biomed. Opt. Express 8(2), 902–917 (2017).
    [Crossref]
  26. I. J. Hsu, C. W. Sun, C. W. Lu, C. C. Yang, C. P. Chiang, and C. W. Lin, “Resolution improvement with dispersion manipulation and a retrieval algorithm in optical coherence tomography,” Appl. Opt. 42(2), 227–234 (2003).
    [Crossref]
  27. I. J. Hsu, C. W. Sun, C. W. Lu, C. C. Yang, C. P. Chiang, and C. W. Lin, “Process algorithms for resolution improvement and contrast enhancement in optical coherence tomography,” Opt. Rev. 10(6), 567–571 (2003).
    [Crossref]
  28. B. Chantarasuwan, P. Baas, B. J. van Heuven, C. Baider, and P. C. van Welzen, “Leaf anatomy of Ficus subsection Urostigma (Moraceae),” Bot. J. Linn. Soc. 175(2), 259–281 (2014).
    [Crossref]
  29. P. Stremplewski, E. Auksorius, P. Wnuk, Ł Kozoń, P. Garstecki, and M. Wojtkowski, “In vivo volumetric imaging by crosstalk-free full-field OCT,” Optica 6(5), 608–617 (2019).
    [Crossref]
  30. B. Karamata, P. Lambelet, M. Laubscher, R. P. Salathé, and T. Lasser, “Spatially incoherent illumination as a mechanism for cross-talk suppression in wide-field optical coherence tomography,” Opt. Lett. 29(7), 736–738 (2004).
    [Crossref]
  31. A. H. Dhalla, J. V. Migacz, and J. A. Izatt, “Crosstalk rejection in parallel optical coherence tomography using spatially incoherent illumination with partially coherent sources,” Opt. Lett. 35(13), 2305–2307 (2010).
    [Crossref]
  32. J. Ogien and A. Dubois, “A compact high-speed full-field optical coherence microscope for high-resolution in vivo skin imaging,” J. Biophotonics 12(2), e201800208 (2019).
    [Crossref]

2019 (2)

J. Ogien and A. Dubois, “A compact high-speed full-field optical coherence microscope for high-resolution in vivo skin imaging,” J. Biophotonics 12(2), e201800208 (2019).
[Crossref]

P. Stremplewski, E. Auksorius, P. Wnuk, Ł Kozoń, P. Garstecki, and M. Wojtkowski, “In vivo volumetric imaging by crosstalk-free full-field OCT,” Optica 6(5), 608–617 (2019).
[Crossref]

2018 (1)

R. Dsouza, J. Won, G. L. Monroy, D. R. Spillman, and S. A. Boppart, “Economical and compact briefcase spectral-domain optical coherence tomography system for primary care and point-of-care applications,” J. Biomed. Opt. 23(09), 1 (2018).
[Crossref]

2017 (2)

2015 (2)

T. Butler, S. Slepneva, B. O’Shaughnessy, B. Kelleher, D. Goulding, S. P. Hegarty, H.-C. Lyu, K. Karnowski, M. Wojtkowski, and G. Huyet, “Single shot, time-resolved measurement of the coherence properties of OCT swept source lasers,” Opt. Lett. 40(10), 2277–2280 (2015).
[Crossref]

N. H. Cho, K. Park, J. Y. Kim, Y. Jung, and J. Kim, “Quantitative assessment of touch-screen panel by nondestructive inspection with three-dimensional real-time display optical coherence tomography,” Opt. Lasers Eng. 68, 50–57 (2015).
[Crossref]

2014 (2)

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
[Crossref]

B. Chantarasuwan, P. Baas, B. J. van Heuven, C. Baider, and P. C. van Welzen, “Leaf anatomy of Ficus subsection Urostigma (Moraceae),” Bot. J. Linn. Soc. 175(2), 259–281 (2014).
[Crossref]

2013 (1)

2012 (1)

H. M. Subhash, “Full-field and single-shot full-field optical coherence tomography: a novel technique for biomedical imaging applications,” Adv. Opt. Tech. 2012, 1–26 (2012).
[Crossref]

2010 (2)

A. Pantelopoulos and N. G. Bourbakis, “A survey on wearable sensor-based systems for health monitoring and prognosis,” IEEE Trans. Syst. Man Cybern. Part C 40(1), 1–12 (2010).
[Crossref]

A. H. Dhalla, J. V. Migacz, and J. A. Izatt, “Crosstalk rejection in parallel optical coherence tomography using spatially incoherent illumination with partially coherent sources,” Opt. Lett. 35(13), 2305–2307 (2010).
[Crossref]

2009 (1)

2008 (1)

2006 (2)

Y. Watanabe, K. Yamada, and M. Sato, “Three-dimensional imaging by ultrahigh-speed axial-lateral parallel time domain optical coherence tomography,” Opt. Express 14(12), 5201–5209 (2006).
[Crossref]

Y. Yasuno, T. Endo, S. Makita, G. Aoki, M. Itoh, and T. Yatagai, “Three-dimensional line-field Fourier domain optical coherence tomography for in vivo dermatological investigation,” J. Biomed. Opt. 11(1), 014014 (2006).
[Crossref]

2004 (4)

D. Raskovic, T. Martin, and E. Jovanov, “Medical monitoring applications for wearable computing,” Comput. J. 47(4), 495–504 (2004).
[Crossref]

U. Anliker, J. Beutel, M. Dyer, R. Enzler, P. Lukowicz, L. Thiele, and G. Troster, “A systematic approach to the design of distributed wearable systems,” IEEE Trans. Comput. 53(8), 1017–1033 (2004).
[Crossref]

B. Karamata, P. Lambelet, M. Laubscher, R. P. Salathé, and T. Lasser, “Spatially incoherent illumination as a mechanism for cross-talk suppression in wide-field optical coherence tomography,” Opt. Lett. 29(7), 736–738 (2004).
[Crossref]

P. Koch, G. Hüttmann, H. Schleiermacher, J. Eichholz, and E. Koch, “Linear optical coherence tomography system with a downconverted fringe pattern,” Opt. Lett. 29(14), 1644–1646 (2004).
[Crossref]

2003 (5)

1998 (2)

1997 (2)

1995 (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[Crossref]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Agrawal, A.

Alfano, R. R.

Anliker, U.

U. Anliker, J. Beutel, M. Dyer, R. Enzler, P. Lukowicz, L. Thiele, and G. Troster, “A systematic approach to the design of distributed wearable systems,” IEEE Trans. Comput. 53(8), 1017–1033 (2004).
[Crossref]

Aoki, G.

Y. Yasuno, T. Endo, S. Makita, G. Aoki, M. Itoh, and T. Yatagai, “Three-dimensional line-field Fourier domain optical coherence tomography for in vivo dermatological investigation,” J. Biomed. Opt. 11(1), 014014 (2006).
[Crossref]

Auksorius, E.

Baas, P.

B. Chantarasuwan, P. Baas, B. J. van Heuven, C. Baider, and P. C. van Welzen, “Leaf anatomy of Ficus subsection Urostigma (Moraceae),” Bot. J. Linn. Soc. 175(2), 259–281 (2014).
[Crossref]

Baclayon, M.

Baider, C.

B. Chantarasuwan, P. Baas, B. J. van Heuven, C. Baider, and P. C. van Welzen, “Leaf anatomy of Ficus subsection Urostigma (Moraceae),” Bot. J. Linn. Soc. 175(2), 259–281 (2014).
[Crossref]

Bajraszewski, T.

Beaurepaire, E.

Beutel, J.

U. Anliker, J. Beutel, M. Dyer, R. Enzler, P. Lukowicz, L. Thiele, and G. Troster, “A systematic approach to the design of distributed wearable systems,” IEEE Trans. Comput. 53(8), 1017–1033 (2004).
[Crossref]

Blanchot, L.

Boccara, A. C.

Boppart, S. A.

R. Dsouza, J. Won, G. L. Monroy, D. R. Spillman, and S. A. Boppart, “Economical and compact briefcase spectral-domain optical coherence tomography system for primary care and point-of-care applications,” J. Biomed. Opt. 23(09), 1 (2018).
[Crossref]

Bourbakis, N. G.

A. Pantelopoulos and N. G. Bourbakis, “A survey on wearable sensor-based systems for health monitoring and prognosis,” IEEE Trans. Syst. Man Cybern. Part C 40(1), 1–12 (2010).
[Crossref]

Butler, T.

Cable, A.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Chantarasuwan, B.

B. Chantarasuwan, P. Baas, B. J. van Heuven, C. Baider, and P. C. van Welzen, “Leaf anatomy of Ficus subsection Urostigma (Moraceae),” Bot. J. Linn. Soc. 175(2), 259–281 (2014).
[Crossref]

Chen, Y.

Chiang, C. P.

I. J. Hsu, C. W. Sun, C. W. Lu, C. C. Yang, C. P. Chiang, and C. W. Lin, “Resolution improvement with dispersion manipulation and a retrieval algorithm in optical coherence tomography,” Appl. Opt. 42(2), 227–234 (2003).
[Crossref]

I. J. Hsu, C. W. Sun, C. W. Lu, C. C. Yang, C. P. Chiang, and C. W. Lin, “Process algorithms for resolution improvement and contrast enhancement in optical coherence tomography,” Opt. Rev. 10(6), 567–571 (2003).
[Crossref]

Chinn, S. R.

Cho, N. H.

N. H. Cho, K. Park, J. Y. Kim, Y. Jung, and J. Kim, “Quantitative assessment of touch-screen panel by nondestructive inspection with three-dimensional real-time display optical coherence tomography,” Opt. Lasers Eng. 68, 50–57 (2015).
[Crossref]

Choma, M. A.

Dhalla, A. H.

Drexler, W.

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
[Crossref]

Dsouza, R.

R. Dsouza, J. Won, G. L. Monroy, D. R. Spillman, and S. A. Boppart, “Economical and compact briefcase spectral-domain optical coherence tomography system for primary care and point-of-care applications,” J. Biomed. Opt. 23(09), 1 (2018).
[Crossref]

Dubois, A.

J. Ogien and A. Dubois, “A compact high-speed full-field optical coherence microscope for high-resolution in vivo skin imaging,” J. Biophotonics 12(2), e201800208 (2019).
[Crossref]

Dunsby, C.

Dyer, M.

U. Anliker, J. Beutel, M. Dyer, R. Enzler, P. Lukowicz, L. Thiele, and G. Troster, “A systematic approach to the design of distributed wearable systems,” IEEE Trans. Comput. 53(8), 1017–1033 (2004).
[Crossref]

Eichholz, J.

El-Zaiat, S. Y.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[Crossref]

Endo, T.

Y. Yasuno, T. Endo, S. Makita, G. Aoki, M. Itoh, and T. Yatagai, “Three-dimensional line-field Fourier domain optical coherence tomography for in vivo dermatological investigation,” J. Biomed. Opt. 11(1), 014014 (2006).
[Crossref]

Enzler, R.

U. Anliker, J. Beutel, M. Dyer, R. Enzler, P. Lukowicz, L. Thiele, and G. Troster, “A systematic approach to the design of distributed wearable systems,” IEEE Trans. Comput. 53(8), 1017–1033 (2004).
[Crossref]

Fercher, A. F.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

French, P. M. W.

Fujimoto, J. G.

Garstecki, P.

Gilerson, A.

Gorczynska, I.

Goulding, D.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Groot, M. L.

Gu, Y.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Hegarty, S. P.

Higgins, L.

Hitzenberger, C. K.

Hsu, I. J.

I. J. Hsu, C. W. Sun, C. W. Lu, C. C. Yang, C. P. Chiang, and C. W. Lin, “Process algorithms for resolution improvement and contrast enhancement in optical coherence tomography,” Opt. Rev. 10(6), 567–571 (2003).
[Crossref]

I. J. Hsu, C. W. Sun, C. W. Lu, C. C. Yang, C. P. Chiang, and C. W. Lin, “Resolution improvement with dispersion manipulation and a retrieval algorithm in optical coherence tomography,” Appl. Opt. 42(2), 227–234 (2003).
[Crossref]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Hüttmann, G.

Huyet, G.

Itoh, M.

Y. Yasuno, T. Endo, S. Makita, G. Aoki, M. Itoh, and T. Yatagai, “Three-dimensional line-field Fourier domain optical coherence tomography for in vivo dermatological investigation,” J. Biomed. Opt. 11(1), 014014 (2006).
[Crossref]

Izatt, J. A.

Jiang, J.

Jovanov, E.

D. Raskovic, T. Martin, and E. Jovanov, “Medical monitoring applications for wearable computing,” Comput. J. 47(4), 495–504 (2004).
[Crossref]

Jung, Y.

N. H. Cho, K. Park, J. Y. Kim, Y. Jung, and J. Kim, “Quantitative assessment of touch-screen panel by nondestructive inspection with three-dimensional real-time display optical coherence tomography,” Opt. Lasers Eng. 68, 50–57 (2015).
[Crossref]

Kamali, T.

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
[Crossref]

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[Crossref]

Karamata, B.

Karnowski, K.

Kelleher, B.

Kim, J.

N. H. Cho, K. Park, J. Y. Kim, Y. Jung, and J. Kim, “Quantitative assessment of touch-screen panel by nondestructive inspection with three-dimensional real-time display optical coherence tomography,” Opt. Lasers Eng. 68, 50–57 (2015).
[Crossref]

Kim, J. Y.

N. H. Cho, K. Park, J. Y. Kim, Y. Jung, and J. Kim, “Quantitative assessment of touch-screen panel by nondestructive inspection with three-dimensional real-time display optical coherence tomography,” Opt. Lasers Eng. 68, 50–57 (2015).
[Crossref]

Koch, E.

Koch, P.

Kozon, L

Kulhavy, M.

Kumar, A.

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
[Crossref]

Lambelet, P.

Lasser, T.

Laubscher, M.

Lebec, M.

Leitgeb, R. A.

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
[Crossref]

R. A. Leitgeb, C. K. Hitzenberger, A. F. Fercher, and T. Bajraszewski, “Phase-shifting algorithm to achieve high-speed long-depth-range probing by frequency-domain optical coherence tomography,” Opt. Lett. 28(22), 2201–2203 (2003).
[Crossref]

Lexer, F.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Lin, C. W.

I. J. Hsu, C. W. Sun, C. W. Lu, C. C. Yang, C. P. Chiang, and C. W. Lin, “Process algorithms for resolution improvement and contrast enhancement in optical coherence tomography,” Opt. Rev. 10(6), 567–571 (2003).
[Crossref]

I. J. Hsu, C. W. Sun, C. W. Lu, C. C. Yang, C. P. Chiang, and C. W. Lin, “Resolution improvement with dispersion manipulation and a retrieval algorithm in optical coherence tomography,” Appl. Opt. 42(2), 227–234 (2003).
[Crossref]

Liu, M.

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
[Crossref]

Lu, C. W.

I. J. Hsu, C. W. Sun, C. W. Lu, C. C. Yang, C. P. Chiang, and C. W. Lin, “Process algorithms for resolution improvement and contrast enhancement in optical coherence tomography,” Opt. Rev. 10(6), 567–571 (2003).
[Crossref]

I. J. Hsu, C. W. Sun, C. W. Lu, C. C. Yang, C. P. Chiang, and C. W. Lin, “Resolution improvement with dispersion manipulation and a retrieval algorithm in optical coherence tomography,” Appl. Opt. 42(2), 227–234 (2003).
[Crossref]

Lukowicz, P.

U. Anliker, J. Beutel, M. Dyer, R. Enzler, P. Lukowicz, L. Thiele, and G. Troster, “A systematic approach to the design of distributed wearable systems,” IEEE Trans. Comput. 53(8), 1017–1033 (2004).
[Crossref]

Lyu, H.-C.

Ma, L.

Makita, S.

Y. Yasuno, T. Endo, S. Makita, G. Aoki, M. Itoh, and T. Yatagai, “Three-dimensional line-field Fourier domain optical coherence tomography for in vivo dermatological investigation,” J. Biomed. Opt. 11(1), 014014 (2006).
[Crossref]

Mansvelder, H. D.

Martin, T.

D. Raskovic, T. Martin, and E. Jovanov, “Medical monitoring applications for wearable computing,” Comput. J. 47(4), 495–504 (2004).
[Crossref]

Migacz, J. V.

Monroy, G. L.

R. Dsouza, J. Won, G. L. Monroy, D. R. Spillman, and S. A. Boppart, “Economical and compact briefcase spectral-domain optical coherence tomography system for primary care and point-of-care applications,” J. Biomed. Opt. 23(09), 1 (2018).
[Crossref]

Nehmetallah, G.

Nguyen, T. U.

O’Shaughnessy, B.

Ogien, J.

J. Ogien and A. Dubois, “A compact high-speed full-field optical coherence microscope for high-resolution in vivo skin imaging,” J. Biophotonics 12(2), e201800208 (2019).
[Crossref]

Pantelopoulos, A.

A. Pantelopoulos and N. G. Bourbakis, “A survey on wearable sensor-based systems for health monitoring and prognosis,” IEEE Trans. Syst. Man Cybern. Part C 40(1), 1–12 (2010).
[Crossref]

Park, K.

N. H. Cho, K. Park, J. Y. Kim, Y. Jung, and J. Kim, “Quantitative assessment of touch-screen panel by nondestructive inspection with three-dimensional real-time display optical coherence tomography,” Opt. Lasers Eng. 68, 50–57 (2015).
[Crossref]

Peterman, E. J.

Pfefer, T. J.

Pierce, M. C.

Potsaid, B.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Raskovic, D.

D. Raskovic, T. Martin, and E. Jovanov, “Medical monitoring applications for wearable computing,” Comput. J. 47(4), 495–504 (2004).
[Crossref]

Saint-Jalmes, H.

Salathé, R. P.

Sarunic, M. V.

Sato, M.

Schleiermacher, H.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Slepneva, S.

Spillman, D. R.

R. Dsouza, J. Won, G. L. Monroy, D. R. Spillman, and S. A. Boppart, “Economical and compact briefcase spectral-domain optical coherence tomography system for primary care and point-of-care applications,” J. Biomed. Opt. 23(09), 1 (2018).
[Crossref]

Srinivasan, V. J.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Stremplewski, P.

Subhash, H. M.

H. M. Subhash, “Full-field and single-shot full-field optical coherence tomography: a novel technique for biomedical imaging applications,” Adv. Opt. Tech. 2012, 1–26 (2012).
[Crossref]

Sun, C. W.

I. J. Hsu, C. W. Sun, C. W. Lu, C. C. Yang, C. P. Chiang, and C. W. Lin, “Process algorithms for resolution improvement and contrast enhancement in optical coherence tomography,” Opt. Rev. 10(6), 567–571 (2003).
[Crossref]

I. J. Hsu, C. W. Sun, C. W. Lu, C. C. Yang, C. P. Chiang, and C. W. Lin, “Resolution improvement with dispersion manipulation and a retrieval algorithm in optical coherence tomography,” Appl. Opt. 42(2), 227–234 (2003).
[Crossref]

Swanson, E. A.

S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22(5), 340–342 (1997).
[Crossref]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Thiele, L.

U. Anliker, J. Beutel, M. Dyer, R. Enzler, P. Lukowicz, L. Thiele, and G. Troster, “A systematic approach to the design of distributed wearable systems,” IEEE Trans. Comput. 53(8), 1017–1033 (2004).
[Crossref]

Tkaczyk, T. S.

Tomlins, P. H.

Toonen, R. F.

Troster, G.

U. Anliker, J. Beutel, M. Dyer, R. Enzler, P. Lukowicz, L. Thiele, and G. Troster, “A systematic approach to the design of distributed wearable systems,” IEEE Trans. Comput. 53(8), 1017–1033 (2004).
[Crossref]

Unterhuber, A.

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
[Crossref]

van Heuven, B. J.

B. Chantarasuwan, P. Baas, B. J. van Heuven, C. Baider, and P. C. van Welzen, “Leaf anatomy of Ficus subsection Urostigma (Moraceae),” Bot. J. Linn. Soc. 175(2), 259–281 (2014).
[Crossref]

van Welzen, P. C.

B. Chantarasuwan, P. Baas, B. J. van Heuven, C. Baider, and P. C. van Welzen, “Leaf anatomy of Ficus subsection Urostigma (Moraceae),” Bot. J. Linn. Soc. 175(2), 259–281 (2014).
[Crossref]

Watanabe, Y.

Witte, S.

Wnuk, P.

Wojtkowski, M.

Won, J.

R. Dsouza, J. Won, G. L. Monroy, D. R. Spillman, and S. A. Boppart, “Economical and compact briefcase spectral-domain optical coherence tomography system for primary care and point-of-care applications,” J. Biomed. Opt. 23(09), 1 (2018).
[Crossref]

Woolliams, P. D.

Yamada, K.

Yang, C.

Yang, C. C.

I. J. Hsu, C. W. Sun, C. W. Lu, C. C. Yang, C. P. Chiang, and C. W. Lin, “Resolution improvement with dispersion manipulation and a retrieval algorithm in optical coherence tomography,” Appl. Opt. 42(2), 227–234 (2003).
[Crossref]

I. J. Hsu, C. W. Sun, C. W. Lu, C. C. Yang, C. P. Chiang, and C. W. Lin, “Process algorithms for resolution improvement and contrast enhancement in optical coherence tomography,” Opt. Rev. 10(6), 567–571 (2003).
[Crossref]

Yasuno, Y.

Y. Yasuno, T. Endo, S. Makita, G. Aoki, M. Itoh, and T. Yatagai, “Three-dimensional line-field Fourier domain optical coherence tomography for in vivo dermatological investigation,” J. Biomed. Opt. 11(1), 014014 (2006).
[Crossref]

Yatagai, T.

Y. Yasuno, T. Endo, S. Makita, G. Aoki, M. Itoh, and T. Yatagai, “Three-dimensional line-field Fourier domain optical coherence tomography for in vivo dermatological investigation,” J. Biomed. Opt. 11(1), 014014 (2006).
[Crossref]

Yu, P.

Zeylikovich, I.

Zhang, M.

Adv. Opt. Tech. (1)

H. M. Subhash, “Full-field and single-shot full-field optical coherence tomography: a novel technique for biomedical imaging applications,” Adv. Opt. Tech. 2012, 1–26 (2012).
[Crossref]

Appl. Opt. (2)

Biomed. Opt. Express (1)

Bot. J. Linn. Soc. (1)

B. Chantarasuwan, P. Baas, B. J. van Heuven, C. Baider, and P. C. van Welzen, “Leaf anatomy of Ficus subsection Urostigma (Moraceae),” Bot. J. Linn. Soc. 175(2), 259–281 (2014).
[Crossref]

Comput. J. (1)

D. Raskovic, T. Martin, and E. Jovanov, “Medical monitoring applications for wearable computing,” Comput. J. 47(4), 495–504 (2004).
[Crossref]

IEEE Trans. Comput. (1)

U. Anliker, J. Beutel, M. Dyer, R. Enzler, P. Lukowicz, L. Thiele, and G. Troster, “A systematic approach to the design of distributed wearable systems,” IEEE Trans. Comput. 53(8), 1017–1033 (2004).
[Crossref]

IEEE Trans. Syst. Man Cybern. Part C (1)

A. Pantelopoulos and N. G. Bourbakis, “A survey on wearable sensor-based systems for health monitoring and prognosis,” IEEE Trans. Syst. Man Cybern. Part C 40(1), 1–12 (2010).
[Crossref]

J. Biomed. Opt. (3)

Y. Yasuno, T. Endo, S. Makita, G. Aoki, M. Itoh, and T. Yatagai, “Three-dimensional line-field Fourier domain optical coherence tomography for in vivo dermatological investigation,” J. Biomed. Opt. 11(1), 014014 (2006).
[Crossref]

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
[Crossref]

R. Dsouza, J. Won, G. L. Monroy, D. R. Spillman, and S. A. Boppart, “Economical and compact briefcase spectral-domain optical coherence tomography system for primary care and point-of-care applications,” J. Biomed. Opt. 23(09), 1 (2018).
[Crossref]

J. Biophotonics (1)

J. Ogien and A. Dubois, “A compact high-speed full-field optical coherence microscope for high-resolution in vivo skin imaging,” J. Biophotonics 12(2), e201800208 (2019).
[Crossref]

Opt. Commun. (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[Crossref]

Opt. Express (6)

Opt. Lasers Eng. (1)

N. H. Cho, K. Park, J. Y. Kim, Y. Jung, and J. Kim, “Quantitative assessment of touch-screen panel by nondestructive inspection with three-dimensional real-time display optical coherence tomography,” Opt. Lasers Eng. 68, 50–57 (2015).
[Crossref]

Opt. Lett. (9)

S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22(5), 340–342 (1997).
[Crossref]

T. Butler, S. Slepneva, B. O’Shaughnessy, B. Kelleher, D. Goulding, S. P. Hegarty, H.-C. Lyu, K. Karnowski, M. Wojtkowski, and G. Huyet, “Single shot, time-resolved measurement of the coherence properties of OCT swept source lasers,” Opt. Lett. 40(10), 2277–2280 (2015).
[Crossref]

P. Koch, G. Hüttmann, H. Schleiermacher, J. Eichholz, and E. Koch, “Linear optical coherence tomography system with a downconverted fringe pattern,” Opt. Lett. 29(14), 1644–1646 (2004).
[Crossref]

R. A. Leitgeb, C. K. Hitzenberger, A. F. Fercher, and T. Bajraszewski, “Phase-shifting algorithm to achieve high-speed long-depth-range probing by frequency-domain optical coherence tomography,” Opt. Lett. 28(22), 2201–2203 (2003).
[Crossref]

M. Zhang, L. Ma, and P. Yu, “Spatial convolution for mirror image suppression in Fourier domain optical coherence tomography,” Opt. Lett. 42(3), 506–509 (2017).
[Crossref]

I. Zeylikovich, A. Gilerson, and R. R. Alfano, “Nonmechanical grating-generated scanning coherence microscopy,” Opt. Lett. 23(23), 1797–1799 (1998).
[Crossref]

E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. Saint-Jalmes, “Full-field optical coherence microscopy,” Opt. Lett. 23(4), 244–246 (1998).
[Crossref]

B. Karamata, P. Lambelet, M. Laubscher, R. P. Salathé, and T. Lasser, “Spatially incoherent illumination as a mechanism for cross-talk suppression in wide-field optical coherence tomography,” Opt. Lett. 29(7), 736–738 (2004).
[Crossref]

A. H. Dhalla, J. V. Migacz, and J. A. Izatt, “Crosstalk rejection in parallel optical coherence tomography using spatially incoherent illumination with partially coherent sources,” Opt. Lett. 35(13), 2305–2307 (2010).
[Crossref]

Opt. Rev. (1)

I. J. Hsu, C. W. Sun, C. W. Lu, C. C. Yang, C. P. Chiang, and C. W. Lin, “Process algorithms for resolution improvement and contrast enhancement in optical coherence tomography,” Opt. Rev. 10(6), 567–571 (2003).
[Crossref]

Optica (1)

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. The (a) layout and (b) experimental setup of the spatial-domain OCT system. L, light source; NDF1, NDF2 and NDF3, neutral-density filters; BE, beam expander; BS, beamsplitter; BB, beam block; DC, dispersion compensator; CM, cylindrical mirror; CL, cylindrical lens; SS, sample stage; CCD, CCD camera.
Fig. 2.
Fig. 2. (a) Configuration for calculation of the relation between the optical delay of the reference beam and its incident position on the cylindrical mirror. CM, cylindrical mirror; CCD, CCD camera. (b) The relation between the optical delay of the reference beam and its incident position on the CCD camera as well as the horizontal pixel number of the CCD camera when a cylindrical mirror with different radii of curvature is used.
Fig. 3.
Fig. 3. (a) IO, (b) I1, (c) I2 and (d) IB measured by the CCD camera where a reflection mirror was used as the sample. (e-h) The corresponding one dimensional intensity distribution of the portion indicated with the dashed lines in (a)-(d).
Fig. 4.
Fig. 4. (a) OCT image of a reflection mirror after image processing. (b) The one-dimensional intensity distribution indicated with the dashed line in (a).
Fig. 5.
Fig. 5. (a) The relation between resulted SNR and the number of measurements. (b) The average of ten OCT images of a reflection mirror after image processing. (c) The one-dimensional intensity distribution indicated with the dashed line in (b).
Fig. 6.
Fig. 6. Merged image of a series of OCT images of a reflection mirror at different axial positions before (a) and after (c) calibration of nonlinearity. The relation between axial depth in a sample and the horizontal pixel number of CCD camera before (b) and after (d) calibration of nonlinearity.
Fig. 7.
Fig. 7. (a) One-dimensional intensity distributions of the OCT images of a reflection mirror at different axial positions. (b) SNR and (c) axial resolution for a sample at different axial depths.
Fig. 8.
Fig. 8. (a) Image of the 1951 USAF resolution test target. (b) Image of the marked region of Group 0 when the reference beam was blocked. (c-d) Images of Elements 3 and 4 of Group 5, respectively, where a plano-concave cylindrical lens was placed in front of the CCD camera to enlarge the image in the lateral direction.
Fig. 9.
Fig. 9. The relation between the magnification, resolution and the imaging range in the lateral direction when a plano-concave cylindrical lens placed in front of the CCD camera.
Fig. 10.
Fig. 10. (a) OCT image and (b) microscopic image of a leaf of Ficus subpisocarpa. CP, cuticle proper; EC, epidermal cells; VB, vascular bundle; SP, spongy parenchyma. The scale bars correspond to 100 µm.
Fig. 11.
Fig. 11. (a) OCT image of a human fingertip. ED, epidermis; SD, sweat duct. (b) OCT image of a human fingertip when the focal plane of the cylindrical lens was moved deeper inside the sample. DE, dermis. The scale bars correspond to 100 µm.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Optical delay = C D + D E a = 2 [( R 2 d 2 )( R R 2 d 2 ) + a d 2 ] R 2 2 d 2 ,
A E = d + ( A B + C D ) tan 2 θ = 2 d ( a + R ) R 2 d 2 R 2 d R 2 2 d 2 .
I O = I S + I R + 2 Re [ E S E R ] + I B ,
I 1 = I R + I B .
I 2 = I S + I B .
I = | I O I 1 I 2 + I B | .
S N R = 20 log ( I s a m p σ b g ) = 20 log ( 1904 11.47 ) = 44.40  dB .
S N R = 20 log ( I s a m p σ b g ) = 20 log ( 1828 6.75 ) = 48.65  dB .

Metrics