Abstract

With the use of adaptive optics (AO), high-resolution microscopic imaging of living human retina in the single cell level has been achieved. In an adaptive optics confocal scanning laser ophthalmoscope (AOSLO) system, with a small field size (about 1 degree, 280 μm), the motion of the eye severely affects the stabilization of the real-time video images and results in significant distortions of the retina images. In this paper, Scale-Invariant Feature Transform (SIFT) is used to abstract stable point features from the retina images. Kanade-Lucas-Tomasi(KLT) algorithm is applied to track the features. With the tracked features, the image distortion in each frame is removed by the second-order polynomial transformation, and 10 successive frames are co-added to enhance the image quality. Features of special interest in an image can also be selected manually and tracked by KLT. A point on a cone is selected manually, and the cone is tracked from frame to frame.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14(11), 2884–2892 (1997).
    [CrossRef] [PubMed]
  2. A. Roorda and D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397(6719), 520–522 (1999).
    [CrossRef] [PubMed]
  3. N. Ling, Y. Zhang, X. Rao, X. Li, C. Wang, Y. Hu, and W. Jiang, “Small table-top adaptive optical systems for human retinal imaging,” Proc. SPIE 4825, 99–105 (2002).
  4. B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29(18), 2142–2144 (2004).
    [CrossRef] [PubMed]
  5. Y. Zhang, J. Rha, R. Jonnal, and D. Miller, “Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina,” Opt. Express 13(12), 4792–4811 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-12-4792 .
    [CrossRef] [PubMed]
  6. R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Opt. Express 13(21), 8532–8546 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-21-8532 .
    [CrossRef] [PubMed]
  7. A. Roorda, F. Romero-Borja, W. Donnelly Iii, H. Queener, T. Hebert, and M. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10(9), 405–412 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-9-405 .
    [PubMed]
  8. S. A. Burns, S. Marcos, A. E. Elsner, and S. Bara, “Contrast improvement of confocal retinal imaging by use of phase-correcting plates,” Opt. Lett. 27(6), 400–402 (2002), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-27-6-400 .
    [CrossRef] [PubMed]
  9. L. U. Jing, L. I. Hao, W. E. I. Ling, S. H. I. Guohua, and Z. H. A. N. G. Yudong, “Retina imaging in vivo with the adaptive optics confocal scanning laser ophthalmoscope,” Proc. SPIE 7519, 75191I (2009).
  10. D. W. Arathorn, Q. Yang, C. R. Vogel, Y. Zhang, P. Tiruveedhula, and A. Roorda, “Retinally stabilized cone-targeted stimulus delivery,” Opt. Express 15(21), 13731–13744 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-21-13731 .
    [CrossRef] [PubMed]
  11. J. B. Mulligan, “Recovery of motion parameters from distortions in scanned images,” Proceedings of the NASAImage Registration Workshop (IRW97), NASA Goddard Space Flight Center, MD (1997).
  12. C. R. Vogel, D. W. Arathorn, A. Roorda, and A. Parker, “Retinal motion estimation in adaptive optics scanning laser ophthalmoscopy,” Opt. Express 14(2), 487–497 (2006).
    [CrossRef] [PubMed]
  13. J. Shi and C. Tomasi, “Good Features to Track,” IEEE Conference on Computer Vision and Pattern Recognition, 593–600 (1994).
  14. D. G. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints,” Int. J. Comput. Vis. 60(2), 91–110 (2004).
    [CrossRef]
  15. N. Ryan, C. Heheghan, and P. de Chazal, “Registration of digital retinal images using landmark correspondence by expectation maximization,” Image Vis. Comput. 22(11), 883–898 (2004).
    [CrossRef]

2009 (1)

L. U. Jing, L. I. Hao, W. E. I. Ling, S. H. I. Guohua, and Z. H. A. N. G. Yudong, “Retina imaging in vivo with the adaptive optics confocal scanning laser ophthalmoscope,” Proc. SPIE 7519, 75191I (2009).

2007 (1)

2006 (1)

2005 (2)

2004 (3)

B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29(18), 2142–2144 (2004).
[CrossRef] [PubMed]

D. G. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints,” Int. J. Comput. Vis. 60(2), 91–110 (2004).
[CrossRef]

N. Ryan, C. Heheghan, and P. de Chazal, “Registration of digital retinal images using landmark correspondence by expectation maximization,” Image Vis. Comput. 22(11), 883–898 (2004).
[CrossRef]

2002 (3)

1999 (1)

A. Roorda and D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397(6719), 520–522 (1999).
[CrossRef] [PubMed]

1997 (1)

Arathorn, D. W.

Artal, P.

Bara, S.

Bower, B. A.

Burns, S. A.

Campbell, M.

Choi, S.

de Chazal, P.

N. Ryan, C. Heheghan, and P. de Chazal, “Registration of digital retinal images using landmark correspondence by expectation maximization,” Image Vis. Comput. 22(11), 883–898 (2004).
[CrossRef]

Donnelly Iii, W.

Drexler, W.

Elsner, A. E.

Fercher, A. F.

Fernández, E. J.

Guohua, S. H. I.

L. U. Jing, L. I. Hao, W. E. I. Ling, S. H. I. Guohua, and Z. H. A. N. G. Yudong, “Retina imaging in vivo with the adaptive optics confocal scanning laser ophthalmoscope,” Proc. SPIE 7519, 75191I (2009).

Hao, L. I.

L. U. Jing, L. I. Hao, W. E. I. Ling, S. H. I. Guohua, and Z. H. A. N. G. Yudong, “Retina imaging in vivo with the adaptive optics confocal scanning laser ophthalmoscope,” Proc. SPIE 7519, 75191I (2009).

Hebert, T.

Heheghan, C.

N. Ryan, C. Heheghan, and P. de Chazal, “Registration of digital retinal images using landmark correspondence by expectation maximization,” Image Vis. Comput. 22(11), 883–898 (2004).
[CrossRef]

Hermann, B.

Hu, Y.

N. Ling, Y. Zhang, X. Rao, X. Li, C. Wang, Y. Hu, and W. Jiang, “Small table-top adaptive optical systems for human retinal imaging,” Proc. SPIE 4825, 99–105 (2002).

Izatt, J. A.

Jiang, W.

N. Ling, Y. Zhang, X. Rao, X. Li, C. Wang, Y. Hu, and W. Jiang, “Small table-top adaptive optical systems for human retinal imaging,” Proc. SPIE 4825, 99–105 (2002).

Jing, L. U.

L. U. Jing, L. I. Hao, W. E. I. Ling, S. H. I. Guohua, and Z. H. A. N. G. Yudong, “Retina imaging in vivo with the adaptive optics confocal scanning laser ophthalmoscope,” Proc. SPIE 7519, 75191I (2009).

Jones, S. M.

Jonnal, R.

Laut, S.

Li, X.

N. Ling, Y. Zhang, X. Rao, X. Li, C. Wang, Y. Hu, and W. Jiang, “Small table-top adaptive optical systems for human retinal imaging,” Proc. SPIE 4825, 99–105 (2002).

Liang, J.

Ling, N.

N. Ling, Y. Zhang, X. Rao, X. Li, C. Wang, Y. Hu, and W. Jiang, “Small table-top adaptive optical systems for human retinal imaging,” Proc. SPIE 4825, 99–105 (2002).

Ling, W. E. I.

L. U. Jing, L. I. Hao, W. E. I. Ling, S. H. I. Guohua, and Z. H. A. N. G. Yudong, “Retina imaging in vivo with the adaptive optics confocal scanning laser ophthalmoscope,” Proc. SPIE 7519, 75191I (2009).

Lowe, D. G.

D. G. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints,” Int. J. Comput. Vis. 60(2), 91–110 (2004).
[CrossRef]

Marcos, S.

Miller, D.

Miller, D. T.

Olivier, S. S.

Parker, A.

Prieto, P. M.

Queener, H.

Rao, X.

N. Ling, Y. Zhang, X. Rao, X. Li, C. Wang, Y. Hu, and W. Jiang, “Small table-top adaptive optical systems for human retinal imaging,” Proc. SPIE 4825, 99–105 (2002).

Rha, J.

Romero-Borja, F.

Roorda, A.

Ryan, N.

N. Ryan, C. Heheghan, and P. de Chazal, “Registration of digital retinal images using landmark correspondence by expectation maximization,” Image Vis. Comput. 22(11), 883–898 (2004).
[CrossRef]

Sattmann, H.

Tiruveedhula, P.

Unterhuber, A.

Vogel, C. R.

Wang, C.

N. Ling, Y. Zhang, X. Rao, X. Li, C. Wang, Y. Hu, and W. Jiang, “Small table-top adaptive optical systems for human retinal imaging,” Proc. SPIE 4825, 99–105 (2002).

Werner, J. S.

Williams, D. R.

Yang, Q.

Yudong, Z. H. A. N. G.

L. U. Jing, L. I. Hao, W. E. I. Ling, S. H. I. Guohua, and Z. H. A. N. G. Yudong, “Retina imaging in vivo with the adaptive optics confocal scanning laser ophthalmoscope,” Proc. SPIE 7519, 75191I (2009).

Zawadzki, R. J.

Zhang, Y.

Zhao, M.

Image Vis. Comput. (1)

N. Ryan, C. Heheghan, and P. de Chazal, “Registration of digital retinal images using landmark correspondence by expectation maximization,” Image Vis. Comput. 22(11), 883–898 (2004).
[CrossRef]

Int. J. Comput. Vis. (1)

D. G. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints,” Int. J. Comput. Vis. 60(2), 91–110 (2004).
[CrossRef]

J. Opt. Soc. Am. A (1)

Nature (1)

A. Roorda and D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397(6719), 520–522 (1999).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (2)

Proc. SPIE (2)

N. Ling, Y. Zhang, X. Rao, X. Li, C. Wang, Y. Hu, and W. Jiang, “Small table-top adaptive optical systems for human retinal imaging,” Proc. SPIE 4825, 99–105 (2002).

L. U. Jing, L. I. Hao, W. E. I. Ling, S. H. I. Guohua, and Z. H. A. N. G. Yudong, “Retina imaging in vivo with the adaptive optics confocal scanning laser ophthalmoscope,” Proc. SPIE 7519, 75191I (2009).

Other (2)

J. B. Mulligan, “Recovery of motion parameters from distortions in scanned images,” Proceedings of the NASAImage Registration Workshop (IRW97), NASA Goddard Space Flight Center, MD (1997).

J. Shi and C. Tomasi, “Good Features to Track,” IEEE Conference on Computer Vision and Pattern Recognition, 593–600 (1994).

Supplementary Material (2)

» Media 1: MOV (1809 KB)     
» Media 2: MOV (933 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

The schematic of AOSLO system. HS, horizontal scanner; VS, vertical scanner; WS, wavefront sensor; DM, deformable mirror; PMT, photomultiplier tubes; BS1, BS2, beam splitter; CL, collecting lens; FM1, FM2, folding mirrors; LD, laser diode; M1~M8, spherical mirrors; PH, pinhole; TL, trial lens; GC, grabbing card.

Fig. 2
Fig. 2

(Media 1) The first frame of Tracked_Points.MOV.

Fig. 3
Fig. 3

The number of the tracked features from frame to frame.

Fig. 4
Fig. 4

Removing distortions by the second-order polynomial transformation. (a) shows the point features abstracted by SIFT in the reference image. (b) shows the points matched by KLT in a distorted image. (c) shows the corrected image with distortions removed by the second-order polynomial transformation.

Fig. 5
Fig. 5

co-added 10 successive frames. (a) the reference frame. (b) the average image without distortions.

Fig. 6
Fig. 6

Average power spectra of Figs. 5(a) and 5(b).

Fig. 7
Fig. 7

(Media 2) First frame of Tracked_Cone.MOV.

Fig. 8
Fig. 8

Horizontal position and vertical position of the tracked cone.

Tables (1)

Tables Icon

Table 1 The expectations(E) and standard deviations(STD) of the transformation parameters

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

x = ( 1 + D ) x + d ,
D = [ d x x d x y d y x d y y ] ,
ε = W [ J ( ( 1 + D ) x + d ) I ( x ) ] 2 ω ( x ) d x ,
1 2 ε D = W [ J ( ( 1 + D ) x + d ) I ( x ) ] g x T ω ( x ) d x = 0 ,
1 2 ε d = W [ J ( ( 1 + D ) x + d ) I ( x ) ] g ω ( x ) d x = 0 ,
g = ( J x , J y ) T ,
J ( ( 1 + D ) x + d ) = J ( x ) + g T u ,
W g x T ( g T x ) ω ( x ) d x = W [ I ( x ) J ( x ) ] g x T ω ( x ) d x ,
W g ( g T u ) ω ( x ) d x = W [ I ( x ) J ( x ) ] g ω ( x ) d x .
[ x ' y ' ] = [ a 00 a 10 a 01 a 11 a 20 a 02 b 00 b 10 b 01 b 11 b 20 b 02 ] [ 1 x y x y x 2 y 2 ] ,
R = [ x 1 ' x 2 ' x k ' y 1 ' y 2 ' y k ' ] .
D = [ 1 1 1 x 1 x 2 x k y 1 y 2 y k x 1 y 1 x 2 y 2 x k y k x 1 2 x 2 2 x k 2 y 1 2 y 2 2 y k 2 ] .
A = [ a 00 a 10 a 01 a 11 a 20 a 02 b 00 b 10 b 01 b 11 b 20 b 02 ] .
A = R D T ( D D T ) 1 .

Metrics