Abstract

Ammonia (NH3) is regarded as an important nitrogen oxides (NOx) precursor and also as an effective reductant for NOx removal in energy utilization through combustion, and it has recently become an attractive non-carbon alternative fuel. To have a better understanding of thermochemical properties of NH3, accurate in situ detection of NH3 in high temperature environments is desirable. Ultraviolet (UV) absorption spectroscopy is a feasible technique. To achieve quantitative measurements, spectrally resolved UV absorption cross-sections of NH3 in hot gas environments at different temperatures from 295 K to 590 K were experimentally measured for the first time. Based on the experimental results, vibrational constants of NH3 were determined and used for the calculation of the absorption cross-section of NH3 at high temperatures above 590 K using the PGOPHER software. The investigated UV spectra covered the range of wavelengths from 190 nm to 230 nm, where spectral structures of the A∼ 1A″2X∼ 1A'1 transition of NH3 in the umbrella bending mode, v2, were recognized. The absorption cross-section was found to decrease at higher temperatures. For example, the absorption cross-section peak of the (6, 0) vibrational band of NH3 decreases from ∼2 × 10−17 to ∼0.5 × 10−17 cm2/molecule with the increase of temperature from 295 K to 1570 K. Using the obtained absorption cross-section, in situ nonintrusive quantification of NH3 in different hot gas environments was achieved with a detection limit varying from below 10 parts per million (ppm) to around 200 ppm as temperature increased from 295 K to 1570 K. The quantitative measurement was applied to an experimental investigation of NH3 combustion process. The concentrations of NH3 and nitric oxide (NO) in the post flame zone of NH3–methane (CH4)–air premixed flames at different equivalence ratios were measured.

© 2021 The Author(s)

PDF Article

References

  • View by:

  1. A. Valera-Medina, H. Xiao, M. Owen-Jones, et al. “Ammonia for Power”. Prog. Energy Combust. Sci. 2018; 69: 63–102.
  2. H. Kobayashi, A. Hayakawa, K.D. Somarathne, et al. “Science and Technology of Ammonia Combustion”. Proc. Combust. Inst. 2019; 37(1): 109–133.
  3. P. Dimitriou, R. Javaid. “A Review of Ammonia as a Compression Ignition Engine Fuel”. Int. J. Hydrogen Energy. 2020; 45(11): 7098–7118.
  4. M.F. Ezzat, I. Dincer. “Energy and Exergy Analyses of a Novel Ammonia Combined Power Plant Operating with Gas Turbine and Solid Oxide Fuel Cell Systems”. Energy. 2020; 194: 116750.
  5. L. Dai, S. Gersen, P. Glarborg, et al. “Experimental and Numerical Analysis of the Autoignition Behavior of NH3 and NH3/H2 Mixtures at High Pressure”. Combust. Flame. 2020; 215: 134–144.
  6. X. Han, Z. Wang, M. Costa, et al. “Experimental and Kinetic Modeling Study of Laminar Burning Velocities of NH3/Air, NH3/H2/Air, NH3/CO/Air and NH3/CH4/Air Premixed Flames”. Combust. Flame. 2019; 206: 214–226.
  7. X. Han, Z. Wang, Y. He, et al. “The Temperature Dependence of the Laminar Burning Velocity and Superadiabatic Flame Temperature Phenomenon for NH3/Air Flames”. Combust. Flame. 2020; 217: 314–320.
  8. X. Han, Z. Wang, Y. He, et al. “Experimental and Kinetic Modeling Study of Laminar Burning Velocities of NH3/Syngas/Air Premixed Flames”. Combust. Flame. 2020; 213: 1–13.
  9. O. Kurata, N. Iki, T. Inoue, et al. “Development of a Wide Range-Operable, Rich-Lean Low-NOx Combustor for NH3 Fuel Gas-Turbine Power Generation”. Proc. Combust. Inst. 2019; 37(4): 4587–4595.
  10. E.C. Okafor, Y. Naito, S. Colson, et al. “Measurement and Modelling of the Laminar Burning Velocity of Methane–Ammonia–Air Flames at High Pressures Using a Reduced Reaction Mechanism”. Combust. Flame. 2019; 204: 162–175.
  11. E.C. Okafor, K.D.K.A. Somarathne, A. Hayakawa, et al. “Towards the Development of an Efficient Low-NOx Ammonia Combustor for a Micro Gas Turbine”. Proc. Combust. Inst. 2019; 37(4): 4597–4606.
  12. R.C. Rocha, M. Costa, X.-S Bai. “Combustion and Emission Characteristics of Ammonia Under Conditions Relevant to Modern Gas Turbines”. Combust. Sci. Technol. 2020, pp. 1–20.
  13. P. Glarborg, A.D. Jensen, J.E Johnsson. “Fuel Nitrogen Conversion in Solid Fuel Fired Systems”. Prog. Energy Combust. Sci. 2003; 29(2): 89–113.
  14. A. Williams, J.M. Jones, L. Ma, et al. “Pollutants from the Combustion of Solid Biomass Fuels”. Prog. Energy Combust. Sci. 2012; 38(2): 113–137.
  15. Q. Ren, C. Zhao. “Evolution of Fuel-N in Gas Phase During Biomass Pyrolysis”. Renewable Sustainable Energy Rev. 2015; 50: 408–418.
  16. M. Jeremiáš, M. Pohořelý, P. Bode, et al. “Ammonia Yield from Gasification of Biomass and Coal in Fluidized Bed Reactor”. Fuel. 2014; 117(PARTB): 917–925.
  17. L. Muzio, G. Quartucy, J. Cichanowiczy. “Overview and Status of Post-Combustion NOx Control: SNCR, SCR and Hybrid Technologies”. Int. J. Environ. Pollut. 2002; 17(1–2): 4–30.
  18. J. Leppälahti, T. Koljonen. “Nitrogen Evolution from Coal, Peat and Wood During Gasification: Literature Review”. Fuel Process. Technol. 1995; 43(1): 1–45.
  19. J. Mellqvist. A. Rosén. “DOAS for Flue Gas Monitoring—I. Temperature Effects in the U.V./Visible Absorption Spectra of NO, NO2, SO2, and NH3”. J. Quant. Spectrosc. Radiat. Transfer. 1996; 56(2): 187–208.
  20. J. Mellqvist, A. Rosén. “DOAS for Flue Gas Monitoring: II. Deviations from the Beer–Lambert Law for the UV/Visible Absorption Spectra of NO, NO2, SO2 and NH3”. J. Quant. Spectrosc. Radiat. Transfer. 1996; 56(2): 209–224.
  21. J. Mellqvist, H. Axelsson, A. Rosén. “DOAS for Flue Gas Monitoring: III. In-Situ Monitoring of Sulfur Dioxide, Nitrogen Monoxide, and Ammonia”. J. Quant. Spectrosc. Radiat. Transfer. 1996; 56(2): 225–240.
  22. S.G. Buckley, C.J. Damm, W.M. Vitovec, et al. “Ammonia Detection and Monitoring with Photofragmentation Fluorescence”. Appl. Opt. 1998; 37(36): 8382–8391.
  23. D. Zhang, Q. Gao, B. Li, et al. “Ammonia Measurements with Femtosecond Laser-Induced Plasma Spectroscopy”. Appl. Opt. 2019; 58(5): 1210–1214.
  24. U. Westblom. M. Aldén. “Laser-Induced Fluorescence Detection of NH3 in Flames with the Use of Two-Photon Excitation”. Appl. Spectrosc. 1990; 44(5): 881–886.
  25. C. Brackmann, O. Hole, B. Zhou, et al. “Characterization of Ammonia Two-Photon Laser-Induced Fluorescence for Gas-Phase Diagnostics”. Appl. Phys. B. 2014; 115(1): 25–33.
  26. D. Zhang, Q. Gao, B. Li, et al. “Instantaneous One-Dimensional Ammonia Measurements with Femtosecond Two-Photon Laser-Induced Fluorescence (Fs-TPLIF)”. Int. J. Hydrogen Energy. 2019; 44(47): 25740–25745.
  27. J. Liu, Q. Gao, B. Li, et al. “Ammonia Measurements with Femtosecond Two-Photon Laser-Induced Fluorescence in Premixed NH3/Air Flames”. Energy Fuels. 2020; 34(2): 1177–1183.
  28. N. Georgiev, M. Aldén. “Two-Photon Degenerate Four-Wave Mixing (DFWM) for the Detection of Ammonia: Applications to Flames”. Appl. Phys. B. 1993; 56(5): 281–286.
  29. A.L. Sahlberg, D. Hot, M. Aldén, et al. “Non-Intrusive, in Situ Detection of Ammonia in Hot Gas Flows with Mid-Infrared Degenerate Four-Wave Mixing at 2.3 µm”. J. Raman Spectrosc. 2016; 47(9): 1140–1148.
  30. M.E. Webber, D.S. Baer, R.K Hanson. “Ammonia Monitoring Near 1.5 µm with Diode-Laser Absorption Sensors”. Appl. Opt. 2001; 40(12): 2031–2042.
  31. F. Stritzke, O. Diemel, S. Wagner. “TDLAS-Based NH3 Mole Fraction Measurement for Exhaust Diagnostics During Selective Catalytic Reduction Using a Fiber-Coupled 2.2-µm DFB Diode Laser”. Appl. Phys. B. 2015; 119(1): 143–152.
  32. R. Sur, R.M. Spearrin, W.Y. Peng, et al. “Line Intensities and Temperature-Dependent Line Broadening Coefficients of Q-Branch Transitions in the V2 Band of Ammonia Near 10.4 µm”. J. Quant. Spectrosc. Radiat. Transfer. 2016; 175: 90–99.
  33. W. Weng, M. Aldén, Z. Li. “Quantitative SO2 Detection in Combustion Environments Using Broad Band Ultraviolet Absorption and Laser-Induced Fluorescence”. Anal. Chem. 2019; 91(16): 10849–10855.
  34. W. Weng, C. Brackmann, T. Leffler, et al. “Ultraviolet Absorption Cross Sections of KOH and KCl for Nonintrusive Species-Specific Quantitative Detection in Hot Flue Gases”. Anal. Chem. 2019; 91(7): 4719–4726.
  35. W. Weng, Z. Li, H. Wu, et al. “Quantitative K–Cl–S Chemistry in Thermochemical Conversion Processes Using in Situ Optical Diagnostics”. Proc. Combust. Inst. 2020. in press. doi: 10.1016/j.proci.2020.05.058.
  36. B. Li, Z. Sun, Z. Li, et al. “Post-Flame Gas-Phase Sulfation of Potassium Chloride”. Combust. Flame. 2013; 160(5): 959–969.
  37. W. Weng, Y. Zhang, H. Wu, et al. “Optical Measurements of KOH, KCl, K. for Quantitative K–Cl Chemistry in Thermochemical Conversion Processes”. Fuel. 2020; 271: 117643.
  38. P. Limão-Vieira, N.C. Jones, S.V. Hoffmann, et al. “Revisiting the Photoabsorption Spectrum of NH3 in the 5.4–10.8 eV Energy Region”. J. Chem. Phys. 2019; 151(18): 184302.
  39. B.M. Cheng, H.C. Lu, H.K. Chen, et al. “Absorption Cross Sections of NH3, NH2D, NHD2, and ND3 in the Spectral Range 140–220 nm and Implications for Planetary Isotopic Fractionation”. Astrophys. J. 2006; 647(2): 1535–1542.
  40. F.Z. Chen, D.L. Judge, C.Y.R. Wu, et al. “Low and Room Temperature Photoabsorption Cross Sections of NH3 in the UV Region”. Planet. Space Sci. 1998; 47(1): 261–266.
  41. J.A. Syage, R.B. Cohen, J. Steadman. “Spectroscopy and Dynamics of Jet-Cooled Hydrazines and Ammonia. I. Single-Photon Absorption and Ionization Spectra”. J. Chem. Phys. 1992; 97(9): 6072–6084.
  42. M. Suto, L.C Lee. “Photodissociation of NH3 at 106–200 nm”. J. Chem. Phys. 1983; 78(7): 4515–4522.
  43. B.A. Thompson, P. Harteck, R.R. Reeves. “Ultraviolet Absorption Coefficients of CO2, CO, O2, H2O, N2O, NH3, NO, SO2, and CH4 Between 1850 and 4000 A”. J. Geophys. Res. 1963; 68(24): 6431–6436.
  44. K Watanabe. “Photoionization and Total Absorption Cross Section of Gases. I. Ionization Potentials of Several Molecules. Cross Sections of NH3 and NO”. J. Chem. Phys. 1954; 22(9): 1564–1570.
  45. E. Tannenbaum, E.M. Coffin, A.J Harrison. “The Far Ultraviolet Absorption Spectra of Simple Alkyl Amines”. J. Chem. Phys. 1953; 21(2): 311–318.
  46. D.F. Davidson, A.Y. Chang, K. Kohse-Höinghaus, et al. “High Temperature Absorption Coefficients of O2, NH3, and H2O for Broadband ArF Excimer Laser Radiation”. J. Quant. Spectrosc. Radiat. Transfer. 1989; 42(4): 267–278.
  47. P.G. Menon, K.W Michel. “Ultraviolet Absorption of Ammonia at High Temperatures Behind Shock Waves”. J. Phys. Chem. 1967; 71(10): 3280–3284.
  48. C.M. Western. PGOPHER Version 10.1. 2018. http://pgopher.chm.bris.ac.uk/ [accessed Jan 7 2021].
  49. J. Henningsen, N. Melander. “Sensitive Measurement of Adsorption Dynamics with Nonresonant Gas Phase Photoacoustics”. Appl. Opt. 1997; 36(27): 7037–7045.
  50. O. Vaittinen, M. Metsälä, S. Persijn, et al. “Adsorption of Ammonia on Treated Stainless Steel and Polymer Surfaces”. Appl. Phys. B. 2014; 115(2): 185–196.
  51. K. Owen, E. Es-Sebbar, A. Farooq. “Measurements of NH3 Linestrengths and Collisional Broadening Coefficients in N2, O2, CO2, and H2O Near 1103.46 cm−1”. J. Quant. Spectrosc. Radiat. Transfer. 2013; 121: 56–68.
  52. W. Weng, J. Borggren, B. Li, et al. “Novel Multi-Jet Burner for Hot Flue Gases of Wide Range of Temperatures and Compositions for Optical Diagnostics of Solid Fuels Gasification/Combustion”. Rev. Sci. Instrum. 2017; 88(4): 045104.
  53. J. Borggren, W. Weng, A. Hosseinnia, et al. “Diode Laser-Based Thermometry Using Two-Line Atomic Fluorescence of Indium and Gallium”. Appl. Phys. B. 2017; 123(12): 278.
  54. LIFBASE. Version 2.1. 2013. https://archive.sri.com/engage/products-solutions/lifbase.
  55. L.D. Ziegler. “Rovibronic Absorption Analysis of the A∼X∼ Transition of Ammonia”. J. Chem. Phys. 1985; 82(2): 664–669.
  56. Reaction Design. Chemkin-Pro 15131. https://personal.ems.psu.edu/∼radovic/ChemKin_Tutorial_2-3-7.pdf [accessed Jan 7 2021].
  57. E.C. Okafor, Y. Naito, S. Colson, et al. “Experimental and Numerical Study of the Laminar Burning Velocity of CH4–NH3–Air Premixed Flames”. Combust. Flame. 2018; 187: 185–198.
  58. A. Hayakawa, Y. Arakawa, R. Mimoto, et al. “Experimental Investigation of Stabilization and Emission Characteristics of Ammonia/Air Premixed Flames in a Swirl Combustor”. Int. J. Hydrogen Energy. 2017; 42(19): 14010–14018.

2020 (9)

P. Dimitriou, R. Javaid. “A Review of Ammonia as a Compression Ignition Engine Fuel”. Int. J. Hydrogen Energy. 2020; 45(11): 7098–7118.

M.F. Ezzat, I. Dincer. “Energy and Exergy Analyses of a Novel Ammonia Combined Power Plant Operating with Gas Turbine and Solid Oxide Fuel Cell Systems”. Energy. 2020; 194: 116750.

L. Dai, S. Gersen, P. Glarborg, et al. “Experimental and Numerical Analysis of the Autoignition Behavior of NH3 and NH3/H2 Mixtures at High Pressure”. Combust. Flame. 2020; 215: 134–144.

X. Han, Z. Wang, Y. He, et al. “The Temperature Dependence of the Laminar Burning Velocity and Superadiabatic Flame Temperature Phenomenon for NH3/Air Flames”. Combust. Flame. 2020; 217: 314–320.

X. Han, Z. Wang, Y. He, et al. “Experimental and Kinetic Modeling Study of Laminar Burning Velocities of NH3/Syngas/Air Premixed Flames”. Combust. Flame. 2020; 213: 1–13.

R.C. Rocha, M. Costa, X.-S Bai. “Combustion and Emission Characteristics of Ammonia Under Conditions Relevant to Modern Gas Turbines”. Combust. Sci. Technol. 2020, pp. 1–20.

J. Liu, Q. Gao, B. Li, et al. “Ammonia Measurements with Femtosecond Two-Photon Laser-Induced Fluorescence in Premixed NH3/Air Flames”. Energy Fuels. 2020; 34(2): 1177–1183.

W. Weng, Y. Zhang, H. Wu, et al. “Optical Measurements of KOH, KCl, K. for Quantitative K–Cl Chemistry in Thermochemical Conversion Processes”. Fuel. 2020; 271: 117643.

W. Weng, Z. Li, H. Wu, et al. “Quantitative K–Cl–S Chemistry in Thermochemical Conversion Processes Using in Situ Optical Diagnostics”. Proc. Combust. Inst. 2020. in press. doi: 10.1016/j.proci.2020.05.058.

2019 (10)

P. Limão-Vieira, N.C. Jones, S.V. Hoffmann, et al. “Revisiting the Photoabsorption Spectrum of NH3 in the 5.4–10.8 eV Energy Region”. J. Chem. Phys. 2019; 151(18): 184302.

W. Weng, M. Aldén, Z. Li. “Quantitative SO2 Detection in Combustion Environments Using Broad Band Ultraviolet Absorption and Laser-Induced Fluorescence”. Anal. Chem. 2019; 91(16): 10849–10855.

W. Weng, C. Brackmann, T. Leffler, et al. “Ultraviolet Absorption Cross Sections of KOH and KCl for Nonintrusive Species-Specific Quantitative Detection in Hot Flue Gases”. Anal. Chem. 2019; 91(7): 4719–4726.

D. Zhang, Q. Gao, B. Li, et al. “Ammonia Measurements with Femtosecond Laser-Induced Plasma Spectroscopy”. Appl. Opt. 2019; 58(5): 1210–1214.

D. Zhang, Q. Gao, B. Li, et al. “Instantaneous One-Dimensional Ammonia Measurements with Femtosecond Two-Photon Laser-Induced Fluorescence (Fs-TPLIF)”. Int. J. Hydrogen Energy. 2019; 44(47): 25740–25745.

H. Kobayashi, A. Hayakawa, K.D. Somarathne, et al. “Science and Technology of Ammonia Combustion”. Proc. Combust. Inst. 2019; 37(1): 109–133.

O. Kurata, N. Iki, T. Inoue, et al. “Development of a Wide Range-Operable, Rich-Lean Low-NOx Combustor for NH3 Fuel Gas-Turbine Power Generation”. Proc. Combust. Inst. 2019; 37(4): 4587–4595.

E.C. Okafor, Y. Naito, S. Colson, et al. “Measurement and Modelling of the Laminar Burning Velocity of Methane–Ammonia–Air Flames at High Pressures Using a Reduced Reaction Mechanism”. Combust. Flame. 2019; 204: 162–175.

E.C. Okafor, K.D.K.A. Somarathne, A. Hayakawa, et al. “Towards the Development of an Efficient Low-NOx Ammonia Combustor for a Micro Gas Turbine”. Proc. Combust. Inst. 2019; 37(4): 4597–4606.

X. Han, Z. Wang, M. Costa, et al. “Experimental and Kinetic Modeling Study of Laminar Burning Velocities of NH3/Air, NH3/H2/Air, NH3/CO/Air and NH3/CH4/Air Premixed Flames”. Combust. Flame. 2019; 206: 214–226.

2018 (2)

A. Valera-Medina, H. Xiao, M. Owen-Jones, et al. “Ammonia for Power”. Prog. Energy Combust. Sci. 2018; 69: 63–102.

E.C. Okafor, Y. Naito, S. Colson, et al. “Experimental and Numerical Study of the Laminar Burning Velocity of CH4–NH3–Air Premixed Flames”. Combust. Flame. 2018; 187: 185–198.

2017 (3)

A. Hayakawa, Y. Arakawa, R. Mimoto, et al. “Experimental Investigation of Stabilization and Emission Characteristics of Ammonia/Air Premixed Flames in a Swirl Combustor”. Int. J. Hydrogen Energy. 2017; 42(19): 14010–14018.

W. Weng, J. Borggren, B. Li, et al. “Novel Multi-Jet Burner for Hot Flue Gases of Wide Range of Temperatures and Compositions for Optical Diagnostics of Solid Fuels Gasification/Combustion”. Rev. Sci. Instrum. 2017; 88(4): 045104.

J. Borggren, W. Weng, A. Hosseinnia, et al. “Diode Laser-Based Thermometry Using Two-Line Atomic Fluorescence of Indium and Gallium”. Appl. Phys. B. 2017; 123(12): 278.

2016 (2)

R. Sur, R.M. Spearrin, W.Y. Peng, et al. “Line Intensities and Temperature-Dependent Line Broadening Coefficients of Q-Branch Transitions in the V2 Band of Ammonia Near 10.4 µm”. J. Quant. Spectrosc. Radiat. Transfer. 2016; 175: 90–99.

A.L. Sahlberg, D. Hot, M. Aldén, et al. “Non-Intrusive, in Situ Detection of Ammonia in Hot Gas Flows with Mid-Infrared Degenerate Four-Wave Mixing at 2.3 µm”. J. Raman Spectrosc. 2016; 47(9): 1140–1148.

2015 (2)

F. Stritzke, O. Diemel, S. Wagner. “TDLAS-Based NH3 Mole Fraction Measurement for Exhaust Diagnostics During Selective Catalytic Reduction Using a Fiber-Coupled 2.2-µm DFB Diode Laser”. Appl. Phys. B. 2015; 119(1): 143–152.

Q. Ren, C. Zhao. “Evolution of Fuel-N in Gas Phase During Biomass Pyrolysis”. Renewable Sustainable Energy Rev. 2015; 50: 408–418.

2014 (3)

M. Jeremiáš, M. Pohořelý, P. Bode, et al. “Ammonia Yield from Gasification of Biomass and Coal in Fluidized Bed Reactor”. Fuel. 2014; 117(PARTB): 917–925.

C. Brackmann, O. Hole, B. Zhou, et al. “Characterization of Ammonia Two-Photon Laser-Induced Fluorescence for Gas-Phase Diagnostics”. Appl. Phys. B. 2014; 115(1): 25–33.

O. Vaittinen, M. Metsälä, S. Persijn, et al. “Adsorption of Ammonia on Treated Stainless Steel and Polymer Surfaces”. Appl. Phys. B. 2014; 115(2): 185–196.

2013 (2)

K. Owen, E. Es-Sebbar, A. Farooq. “Measurements of NH3 Linestrengths and Collisional Broadening Coefficients in N2, O2, CO2, and H2O Near 1103.46 cm−1”. J. Quant. Spectrosc. Radiat. Transfer. 2013; 121: 56–68.

B. Li, Z. Sun, Z. Li, et al. “Post-Flame Gas-Phase Sulfation of Potassium Chloride”. Combust. Flame. 2013; 160(5): 959–969.

2012 (1)

A. Williams, J.M. Jones, L. Ma, et al. “Pollutants from the Combustion of Solid Biomass Fuels”. Prog. Energy Combust. Sci. 2012; 38(2): 113–137.

2006 (1)

B.M. Cheng, H.C. Lu, H.K. Chen, et al. “Absorption Cross Sections of NH3, NH2D, NHD2, and ND3 in the Spectral Range 140–220 nm and Implications for Planetary Isotopic Fractionation”. Astrophys. J. 2006; 647(2): 1535–1542.

2003 (1)

P. Glarborg, A.D. Jensen, J.E Johnsson. “Fuel Nitrogen Conversion in Solid Fuel Fired Systems”. Prog. Energy Combust. Sci. 2003; 29(2): 89–113.

2002 (1)

L. Muzio, G. Quartucy, J. Cichanowiczy. “Overview and Status of Post-Combustion NOx Control: SNCR, SCR and Hybrid Technologies”. Int. J. Environ. Pollut. 2002; 17(1–2): 4–30.

2001 (1)

M.E. Webber, D.S. Baer, R.K Hanson. “Ammonia Monitoring Near 1.5 µm with Diode-Laser Absorption Sensors”. Appl. Opt. 2001; 40(12): 2031–2042.

1998 (2)

S.G. Buckley, C.J. Damm, W.M. Vitovec, et al. “Ammonia Detection and Monitoring with Photofragmentation Fluorescence”. Appl. Opt. 1998; 37(36): 8382–8391.

F.Z. Chen, D.L. Judge, C.Y.R. Wu, et al. “Low and Room Temperature Photoabsorption Cross Sections of NH3 in the UV Region”. Planet. Space Sci. 1998; 47(1): 261–266.

1997 (1)

J. Henningsen, N. Melander. “Sensitive Measurement of Adsorption Dynamics with Nonresonant Gas Phase Photoacoustics”. Appl. Opt. 1997; 36(27): 7037–7045.

1996 (3)

J. Mellqvist. A. Rosén. “DOAS for Flue Gas Monitoring—I. Temperature Effects in the U.V./Visible Absorption Spectra of NO, NO2, SO2, and NH3”. J. Quant. Spectrosc. Radiat. Transfer. 1996; 56(2): 187–208.

J. Mellqvist, A. Rosén. “DOAS for Flue Gas Monitoring: II. Deviations from the Beer–Lambert Law for the UV/Visible Absorption Spectra of NO, NO2, SO2 and NH3”. J. Quant. Spectrosc. Radiat. Transfer. 1996; 56(2): 209–224.

J. Mellqvist, H. Axelsson, A. Rosén. “DOAS for Flue Gas Monitoring: III. In-Situ Monitoring of Sulfur Dioxide, Nitrogen Monoxide, and Ammonia”. J. Quant. Spectrosc. Radiat. Transfer. 1996; 56(2): 225–240.

1995 (1)

J. Leppälahti, T. Koljonen. “Nitrogen Evolution from Coal, Peat and Wood During Gasification: Literature Review”. Fuel Process. Technol. 1995; 43(1): 1–45.

1993 (1)

N. Georgiev, M. Aldén. “Two-Photon Degenerate Four-Wave Mixing (DFWM) for the Detection of Ammonia: Applications to Flames”. Appl. Phys. B. 1993; 56(5): 281–286.

1992 (1)

J.A. Syage, R.B. Cohen, J. Steadman. “Spectroscopy and Dynamics of Jet-Cooled Hydrazines and Ammonia. I. Single-Photon Absorption and Ionization Spectra”. J. Chem. Phys. 1992; 97(9): 6072–6084.

1990 (1)

U. Westblom. M. Aldén. “Laser-Induced Fluorescence Detection of NH3 in Flames with the Use of Two-Photon Excitation”. Appl. Spectrosc. 1990; 44(5): 881–886.

1989 (1)

D.F. Davidson, A.Y. Chang, K. Kohse-Höinghaus, et al. “High Temperature Absorption Coefficients of O2, NH3, and H2O for Broadband ArF Excimer Laser Radiation”. J. Quant. Spectrosc. Radiat. Transfer. 1989; 42(4): 267–278.

1985 (1)

L.D. Ziegler. “Rovibronic Absorption Analysis of the A∼X∼ Transition of Ammonia”. J. Chem. Phys. 1985; 82(2): 664–669.

1983 (1)

M. Suto, L.C Lee. “Photodissociation of NH3 at 106–200 nm”. J. Chem. Phys. 1983; 78(7): 4515–4522.

1967 (1)

P.G. Menon, K.W Michel. “Ultraviolet Absorption of Ammonia at High Temperatures Behind Shock Waves”. J. Phys. Chem. 1967; 71(10): 3280–3284.

1963 (1)

B.A. Thompson, P. Harteck, R.R. Reeves. “Ultraviolet Absorption Coefficients of CO2, CO, O2, H2O, N2O, NH3, NO, SO2, and CH4 Between 1850 and 4000 A”. J. Geophys. Res. 1963; 68(24): 6431–6436.

1954 (1)

K Watanabe. “Photoionization and Total Absorption Cross Section of Gases. I. Ionization Potentials of Several Molecules. Cross Sections of NH3 and NO”. J. Chem. Phys. 1954; 22(9): 1564–1570.

1953 (1)

E. Tannenbaum, E.M. Coffin, A.J Harrison. “The Far Ultraviolet Absorption Spectra of Simple Alkyl Amines”. J. Chem. Phys. 1953; 21(2): 311–318.

Aldén, M

N. Georgiev, M. Aldén. “Two-Photon Degenerate Four-Wave Mixing (DFWM) for the Detection of Ammonia: Applications to Flames”. Appl. Phys. B. 1993; 56(5): 281–286.

U. Westblom. M. Aldén. “Laser-Induced Fluorescence Detection of NH3 in Flames with the Use of Two-Photon Excitation”. Appl. Spectrosc. 1990; 44(5): 881–886.

Aldén, M.

W. Weng, M. Aldén, Z. Li. “Quantitative SO2 Detection in Combustion Environments Using Broad Band Ultraviolet Absorption and Laser-Induced Fluorescence”. Anal. Chem. 2019; 91(16): 10849–10855.

A.L. Sahlberg, D. Hot, M. Aldén, et al. “Non-Intrusive, in Situ Detection of Ammonia in Hot Gas Flows with Mid-Infrared Degenerate Four-Wave Mixing at 2.3 µm”. J. Raman Spectrosc. 2016; 47(9): 1140–1148.

Arakawa, Y.

A. Hayakawa, Y. Arakawa, R. Mimoto, et al. “Experimental Investigation of Stabilization and Emission Characteristics of Ammonia/Air Premixed Flames in a Swirl Combustor”. Int. J. Hydrogen Energy. 2017; 42(19): 14010–14018.

Axelsson, H.

J. Mellqvist, H. Axelsson, A. Rosén. “DOAS for Flue Gas Monitoring: III. In-Situ Monitoring of Sulfur Dioxide, Nitrogen Monoxide, and Ammonia”. J. Quant. Spectrosc. Radiat. Transfer. 1996; 56(2): 225–240.

Baer, D.S.

M.E. Webber, D.S. Baer, R.K Hanson. “Ammonia Monitoring Near 1.5 µm with Diode-Laser Absorption Sensors”. Appl. Opt. 2001; 40(12): 2031–2042.

Bai, X.-S

R.C. Rocha, M. Costa, X.-S Bai. “Combustion and Emission Characteristics of Ammonia Under Conditions Relevant to Modern Gas Turbines”. Combust. Sci. Technol. 2020, pp. 1–20.

Bode, P.

M. Jeremiáš, M. Pohořelý, P. Bode, et al. “Ammonia Yield from Gasification of Biomass and Coal in Fluidized Bed Reactor”. Fuel. 2014; 117(PARTB): 917–925.

Borggren, J.

W. Weng, J. Borggren, B. Li, et al. “Novel Multi-Jet Burner for Hot Flue Gases of Wide Range of Temperatures and Compositions for Optical Diagnostics of Solid Fuels Gasification/Combustion”. Rev. Sci. Instrum. 2017; 88(4): 045104.

J. Borggren, W. Weng, A. Hosseinnia, et al. “Diode Laser-Based Thermometry Using Two-Line Atomic Fluorescence of Indium and Gallium”. Appl. Phys. B. 2017; 123(12): 278.

Brackmann, C.

W. Weng, C. Brackmann, T. Leffler, et al. “Ultraviolet Absorption Cross Sections of KOH and KCl for Nonintrusive Species-Specific Quantitative Detection in Hot Flue Gases”. Anal. Chem. 2019; 91(7): 4719–4726.

C. Brackmann, O. Hole, B. Zhou, et al. “Characterization of Ammonia Two-Photon Laser-Induced Fluorescence for Gas-Phase Diagnostics”. Appl. Phys. B. 2014; 115(1): 25–33.

Buckley, S.G.

S.G. Buckley, C.J. Damm, W.M. Vitovec, et al. “Ammonia Detection and Monitoring with Photofragmentation Fluorescence”. Appl. Opt. 1998; 37(36): 8382–8391.

Chang, A.Y.

D.F. Davidson, A.Y. Chang, K. Kohse-Höinghaus, et al. “High Temperature Absorption Coefficients of O2, NH3, and H2O for Broadband ArF Excimer Laser Radiation”. J. Quant. Spectrosc. Radiat. Transfer. 1989; 42(4): 267–278.

Chen, F.Z.

F.Z. Chen, D.L. Judge, C.Y.R. Wu, et al. “Low and Room Temperature Photoabsorption Cross Sections of NH3 in the UV Region”. Planet. Space Sci. 1998; 47(1): 261–266.

Chen, H.K.

B.M. Cheng, H.C. Lu, H.K. Chen, et al. “Absorption Cross Sections of NH3, NH2D, NHD2, and ND3 in the Spectral Range 140–220 nm and Implications for Planetary Isotopic Fractionation”. Astrophys. J. 2006; 647(2): 1535–1542.

Cheng, B.M.

B.M. Cheng, H.C. Lu, H.K. Chen, et al. “Absorption Cross Sections of NH3, NH2D, NHD2, and ND3 in the Spectral Range 140–220 nm and Implications for Planetary Isotopic Fractionation”. Astrophys. J. 2006; 647(2): 1535–1542.

Cichanowiczy, J

L. Muzio, G. Quartucy, J. Cichanowiczy. “Overview and Status of Post-Combustion NOx Control: SNCR, SCR and Hybrid Technologies”. Int. J. Environ. Pollut. 2002; 17(1–2): 4–30.

Coffin, E.M.

E. Tannenbaum, E.M. Coffin, A.J Harrison. “The Far Ultraviolet Absorption Spectra of Simple Alkyl Amines”. J. Chem. Phys. 1953; 21(2): 311–318.

Cohen, R.B.

J.A. Syage, R.B. Cohen, J. Steadman. “Spectroscopy and Dynamics of Jet-Cooled Hydrazines and Ammonia. I. Single-Photon Absorption and Ionization Spectra”. J. Chem. Phys. 1992; 97(9): 6072–6084.

Colson, S.

E.C. Okafor, Y. Naito, S. Colson, et al. “Measurement and Modelling of the Laminar Burning Velocity of Methane–Ammonia–Air Flames at High Pressures Using a Reduced Reaction Mechanism”. Combust. Flame. 2019; 204: 162–175.

E.C. Okafor, Y. Naito, S. Colson, et al. “Experimental and Numerical Study of the Laminar Burning Velocity of CH4–NH3–Air Premixed Flames”. Combust. Flame. 2018; 187: 185–198.

Costa, M.

R.C. Rocha, M. Costa, X.-S Bai. “Combustion and Emission Characteristics of Ammonia Under Conditions Relevant to Modern Gas Turbines”. Combust. Sci. Technol. 2020, pp. 1–20.

X. Han, Z. Wang, M. Costa, et al. “Experimental and Kinetic Modeling Study of Laminar Burning Velocities of NH3/Air, NH3/H2/Air, NH3/CO/Air and NH3/CH4/Air Premixed Flames”. Combust. Flame. 2019; 206: 214–226.

Dai, L.

L. Dai, S. Gersen, P. Glarborg, et al. “Experimental and Numerical Analysis of the Autoignition Behavior of NH3 and NH3/H2 Mixtures at High Pressure”. Combust. Flame. 2020; 215: 134–144.

Damm, C.J.

S.G. Buckley, C.J. Damm, W.M. Vitovec, et al. “Ammonia Detection and Monitoring with Photofragmentation Fluorescence”. Appl. Opt. 1998; 37(36): 8382–8391.

Davidson, D.F.

D.F. Davidson, A.Y. Chang, K. Kohse-Höinghaus, et al. “High Temperature Absorption Coefficients of O2, NH3, and H2O for Broadband ArF Excimer Laser Radiation”. J. Quant. Spectrosc. Radiat. Transfer. 1989; 42(4): 267–278.

Diemel, O.

F. Stritzke, O. Diemel, S. Wagner. “TDLAS-Based NH3 Mole Fraction Measurement for Exhaust Diagnostics During Selective Catalytic Reduction Using a Fiber-Coupled 2.2-µm DFB Diode Laser”. Appl. Phys. B. 2015; 119(1): 143–152.

Dimitriou, P.

P. Dimitriou, R. Javaid. “A Review of Ammonia as a Compression Ignition Engine Fuel”. Int. J. Hydrogen Energy. 2020; 45(11): 7098–7118.

Dincer, I

M.F. Ezzat, I. Dincer. “Energy and Exergy Analyses of a Novel Ammonia Combined Power Plant Operating with Gas Turbine and Solid Oxide Fuel Cell Systems”. Energy. 2020; 194: 116750.

Es-Sebbar, E.

K. Owen, E. Es-Sebbar, A. Farooq. “Measurements of NH3 Linestrengths and Collisional Broadening Coefficients in N2, O2, CO2, and H2O Near 1103.46 cm−1”. J. Quant. Spectrosc. Radiat. Transfer. 2013; 121: 56–68.

Ezzat, M.F.

M.F. Ezzat, I. Dincer. “Energy and Exergy Analyses of a Novel Ammonia Combined Power Plant Operating with Gas Turbine and Solid Oxide Fuel Cell Systems”. Energy. 2020; 194: 116750.

Farooq, A

K. Owen, E. Es-Sebbar, A. Farooq. “Measurements of NH3 Linestrengths and Collisional Broadening Coefficients in N2, O2, CO2, and H2O Near 1103.46 cm−1”. J. Quant. Spectrosc. Radiat. Transfer. 2013; 121: 56–68.

Gao, Q.

J. Liu, Q. Gao, B. Li, et al. “Ammonia Measurements with Femtosecond Two-Photon Laser-Induced Fluorescence in Premixed NH3/Air Flames”. Energy Fuels. 2020; 34(2): 1177–1183.

D. Zhang, Q. Gao, B. Li, et al. “Instantaneous One-Dimensional Ammonia Measurements with Femtosecond Two-Photon Laser-Induced Fluorescence (Fs-TPLIF)”. Int. J. Hydrogen Energy. 2019; 44(47): 25740–25745.

D. Zhang, Q. Gao, B. Li, et al. “Ammonia Measurements with Femtosecond Laser-Induced Plasma Spectroscopy”. Appl. Opt. 2019; 58(5): 1210–1214.

Georgiev, N.

N. Georgiev, M. Aldén. “Two-Photon Degenerate Four-Wave Mixing (DFWM) for the Detection of Ammonia: Applications to Flames”. Appl. Phys. B. 1993; 56(5): 281–286.

Gersen, S.

L. Dai, S. Gersen, P. Glarborg, et al. “Experimental and Numerical Analysis of the Autoignition Behavior of NH3 and NH3/H2 Mixtures at High Pressure”. Combust. Flame. 2020; 215: 134–144.

Glarborg, P.

L. Dai, S. Gersen, P. Glarborg, et al. “Experimental and Numerical Analysis of the Autoignition Behavior of NH3 and NH3/H2 Mixtures at High Pressure”. Combust. Flame. 2020; 215: 134–144.

P. Glarborg, A.D. Jensen, J.E Johnsson. “Fuel Nitrogen Conversion in Solid Fuel Fired Systems”. Prog. Energy Combust. Sci. 2003; 29(2): 89–113.

Han, X.

X. Han, Z. Wang, Y. He, et al. “Experimental and Kinetic Modeling Study of Laminar Burning Velocities of NH3/Syngas/Air Premixed Flames”. Combust. Flame. 2020; 213: 1–13.

X. Han, Z. Wang, Y. He, et al. “The Temperature Dependence of the Laminar Burning Velocity and Superadiabatic Flame Temperature Phenomenon for NH3/Air Flames”. Combust. Flame. 2020; 217: 314–320.

X. Han, Z. Wang, M. Costa, et al. “Experimental and Kinetic Modeling Study of Laminar Burning Velocities of NH3/Air, NH3/H2/Air, NH3/CO/Air and NH3/CH4/Air Premixed Flames”. Combust. Flame. 2019; 206: 214–226.

Hanson, R.K

M.E. Webber, D.S. Baer, R.K Hanson. “Ammonia Monitoring Near 1.5 µm with Diode-Laser Absorption Sensors”. Appl. Opt. 2001; 40(12): 2031–2042.

Harrison, A.J

E. Tannenbaum, E.M. Coffin, A.J Harrison. “The Far Ultraviolet Absorption Spectra of Simple Alkyl Amines”. J. Chem. Phys. 1953; 21(2): 311–318.

Harteck, P.

B.A. Thompson, P. Harteck, R.R. Reeves. “Ultraviolet Absorption Coefficients of CO2, CO, O2, H2O, N2O, NH3, NO, SO2, and CH4 Between 1850 and 4000 A”. J. Geophys. Res. 1963; 68(24): 6431–6436.

Hayakawa, A.

H. Kobayashi, A. Hayakawa, K.D. Somarathne, et al. “Science and Technology of Ammonia Combustion”. Proc. Combust. Inst. 2019; 37(1): 109–133.

E.C. Okafor, K.D.K.A. Somarathne, A. Hayakawa, et al. “Towards the Development of an Efficient Low-NOx Ammonia Combustor for a Micro Gas Turbine”. Proc. Combust. Inst. 2019; 37(4): 4597–4606.

A. Hayakawa, Y. Arakawa, R. Mimoto, et al. “Experimental Investigation of Stabilization and Emission Characteristics of Ammonia/Air Premixed Flames in a Swirl Combustor”. Int. J. Hydrogen Energy. 2017; 42(19): 14010–14018.

He, Y.

X. Han, Z. Wang, Y. He, et al. “Experimental and Kinetic Modeling Study of Laminar Burning Velocities of NH3/Syngas/Air Premixed Flames”. Combust. Flame. 2020; 213: 1–13.

X. Han, Z. Wang, Y. He, et al. “The Temperature Dependence of the Laminar Burning Velocity and Superadiabatic Flame Temperature Phenomenon for NH3/Air Flames”. Combust. Flame. 2020; 217: 314–320.

Henningsen, J.

J. Henningsen, N. Melander. “Sensitive Measurement of Adsorption Dynamics with Nonresonant Gas Phase Photoacoustics”. Appl. Opt. 1997; 36(27): 7037–7045.

Hoffmann, S.V.

P. Limão-Vieira, N.C. Jones, S.V. Hoffmann, et al. “Revisiting the Photoabsorption Spectrum of NH3 in the 5.4–10.8 eV Energy Region”. J. Chem. Phys. 2019; 151(18): 184302.

Hole, O.

C. Brackmann, O. Hole, B. Zhou, et al. “Characterization of Ammonia Two-Photon Laser-Induced Fluorescence for Gas-Phase Diagnostics”. Appl. Phys. B. 2014; 115(1): 25–33.

Hosseinnia, A.

J. Borggren, W. Weng, A. Hosseinnia, et al. “Diode Laser-Based Thermometry Using Two-Line Atomic Fluorescence of Indium and Gallium”. Appl. Phys. B. 2017; 123(12): 278.

Hot, D.

A.L. Sahlberg, D. Hot, M. Aldén, et al. “Non-Intrusive, in Situ Detection of Ammonia in Hot Gas Flows with Mid-Infrared Degenerate Four-Wave Mixing at 2.3 µm”. J. Raman Spectrosc. 2016; 47(9): 1140–1148.

Iki, N.

O. Kurata, N. Iki, T. Inoue, et al. “Development of a Wide Range-Operable, Rich-Lean Low-NOx Combustor for NH3 Fuel Gas-Turbine Power Generation”. Proc. Combust. Inst. 2019; 37(4): 4587–4595.

Inoue, T.

O. Kurata, N. Iki, T. Inoue, et al. “Development of a Wide Range-Operable, Rich-Lean Low-NOx Combustor for NH3 Fuel Gas-Turbine Power Generation”. Proc. Combust. Inst. 2019; 37(4): 4587–4595.

Javaid, R

P. Dimitriou, R. Javaid. “A Review of Ammonia as a Compression Ignition Engine Fuel”. Int. J. Hydrogen Energy. 2020; 45(11): 7098–7118.

Jensen, A.D.

P. Glarborg, A.D. Jensen, J.E Johnsson. “Fuel Nitrogen Conversion in Solid Fuel Fired Systems”. Prog. Energy Combust. Sci. 2003; 29(2): 89–113.

Jeremiáš, M.

M. Jeremiáš, M. Pohořelý, P. Bode, et al. “Ammonia Yield from Gasification of Biomass and Coal in Fluidized Bed Reactor”. Fuel. 2014; 117(PARTB): 917–925.

Johnsson, J.E

P. Glarborg, A.D. Jensen, J.E Johnsson. “Fuel Nitrogen Conversion in Solid Fuel Fired Systems”. Prog. Energy Combust. Sci. 2003; 29(2): 89–113.

Jones, J.M.

A. Williams, J.M. Jones, L. Ma, et al. “Pollutants from the Combustion of Solid Biomass Fuels”. Prog. Energy Combust. Sci. 2012; 38(2): 113–137.

Jones, N.C.

P. Limão-Vieira, N.C. Jones, S.V. Hoffmann, et al. “Revisiting the Photoabsorption Spectrum of NH3 in the 5.4–10.8 eV Energy Region”. J. Chem. Phys. 2019; 151(18): 184302.

Judge, D.L.

F.Z. Chen, D.L. Judge, C.Y.R. Wu, et al. “Low and Room Temperature Photoabsorption Cross Sections of NH3 in the UV Region”. Planet. Space Sci. 1998; 47(1): 261–266.

Kobayashi, H.

H. Kobayashi, A. Hayakawa, K.D. Somarathne, et al. “Science and Technology of Ammonia Combustion”. Proc. Combust. Inst. 2019; 37(1): 109–133.

Kohse-Höinghaus, K.

D.F. Davidson, A.Y. Chang, K. Kohse-Höinghaus, et al. “High Temperature Absorption Coefficients of O2, NH3, and H2O for Broadband ArF Excimer Laser Radiation”. J. Quant. Spectrosc. Radiat. Transfer. 1989; 42(4): 267–278.

Koljonen, T

J. Leppälahti, T. Koljonen. “Nitrogen Evolution from Coal, Peat and Wood During Gasification: Literature Review”. Fuel Process. Technol. 1995; 43(1): 1–45.

Kurata, O.

O. Kurata, N. Iki, T. Inoue, et al. “Development of a Wide Range-Operable, Rich-Lean Low-NOx Combustor for NH3 Fuel Gas-Turbine Power Generation”. Proc. Combust. Inst. 2019; 37(4): 4587–4595.

Lee, L.C

M. Suto, L.C Lee. “Photodissociation of NH3 at 106–200 nm”. J. Chem. Phys. 1983; 78(7): 4515–4522.

Leffler, T.

W. Weng, C. Brackmann, T. Leffler, et al. “Ultraviolet Absorption Cross Sections of KOH and KCl for Nonintrusive Species-Specific Quantitative Detection in Hot Flue Gases”. Anal. Chem. 2019; 91(7): 4719–4726.

Leppälahti, J.

J. Leppälahti, T. Koljonen. “Nitrogen Evolution from Coal, Peat and Wood During Gasification: Literature Review”. Fuel Process. Technol. 1995; 43(1): 1–45.

Li, B.

J. Liu, Q. Gao, B. Li, et al. “Ammonia Measurements with Femtosecond Two-Photon Laser-Induced Fluorescence in Premixed NH3/Air Flames”. Energy Fuels. 2020; 34(2): 1177–1183.

D. Zhang, Q. Gao, B. Li, et al. “Instantaneous One-Dimensional Ammonia Measurements with Femtosecond Two-Photon Laser-Induced Fluorescence (Fs-TPLIF)”. Int. J. Hydrogen Energy. 2019; 44(47): 25740–25745.

D. Zhang, Q. Gao, B. Li, et al. “Ammonia Measurements with Femtosecond Laser-Induced Plasma Spectroscopy”. Appl. Opt. 2019; 58(5): 1210–1214.

W. Weng, J. Borggren, B. Li, et al. “Novel Multi-Jet Burner for Hot Flue Gases of Wide Range of Temperatures and Compositions for Optical Diagnostics of Solid Fuels Gasification/Combustion”. Rev. Sci. Instrum. 2017; 88(4): 045104.

B. Li, Z. Sun, Z. Li, et al. “Post-Flame Gas-Phase Sulfation of Potassium Chloride”. Combust. Flame. 2013; 160(5): 959–969.

Li, Z

W. Weng, M. Aldén, Z. Li. “Quantitative SO2 Detection in Combustion Environments Using Broad Band Ultraviolet Absorption and Laser-Induced Fluorescence”. Anal. Chem. 2019; 91(16): 10849–10855.

Li, Z.

W. Weng, Z. Li, H. Wu, et al. “Quantitative K–Cl–S Chemistry in Thermochemical Conversion Processes Using in Situ Optical Diagnostics”. Proc. Combust. Inst. 2020. in press. doi: 10.1016/j.proci.2020.05.058.

B. Li, Z. Sun, Z. Li, et al. “Post-Flame Gas-Phase Sulfation of Potassium Chloride”. Combust. Flame. 2013; 160(5): 959–969.

Limão-Vieira, P.

P. Limão-Vieira, N.C. Jones, S.V. Hoffmann, et al. “Revisiting the Photoabsorption Spectrum of NH3 in the 5.4–10.8 eV Energy Region”. J. Chem. Phys. 2019; 151(18): 184302.

Liu, J.

J. Liu, Q. Gao, B. Li, et al. “Ammonia Measurements with Femtosecond Two-Photon Laser-Induced Fluorescence in Premixed NH3/Air Flames”. Energy Fuels. 2020; 34(2): 1177–1183.

Lu, H.C.

B.M. Cheng, H.C. Lu, H.K. Chen, et al. “Absorption Cross Sections of NH3, NH2D, NHD2, and ND3 in the Spectral Range 140–220 nm and Implications for Planetary Isotopic Fractionation”. Astrophys. J. 2006; 647(2): 1535–1542.

Ma, L.

A. Williams, J.M. Jones, L. Ma, et al. “Pollutants from the Combustion of Solid Biomass Fuels”. Prog. Energy Combust. Sci. 2012; 38(2): 113–137.

Melander, N

J. Henningsen, N. Melander. “Sensitive Measurement of Adsorption Dynamics with Nonresonant Gas Phase Photoacoustics”. Appl. Opt. 1997; 36(27): 7037–7045.

Mellqvist, J.

J. Mellqvist. A. Rosén. “DOAS for Flue Gas Monitoring—I. Temperature Effects in the U.V./Visible Absorption Spectra of NO, NO2, SO2, and NH3”. J. Quant. Spectrosc. Radiat. Transfer. 1996; 56(2): 187–208.

J. Mellqvist, H. Axelsson, A. Rosén. “DOAS for Flue Gas Monitoring: III. In-Situ Monitoring of Sulfur Dioxide, Nitrogen Monoxide, and Ammonia”. J. Quant. Spectrosc. Radiat. Transfer. 1996; 56(2): 225–240.

J. Mellqvist, A. Rosén. “DOAS for Flue Gas Monitoring: II. Deviations from the Beer–Lambert Law for the UV/Visible Absorption Spectra of NO, NO2, SO2 and NH3”. J. Quant. Spectrosc. Radiat. Transfer. 1996; 56(2): 209–224.

Menon, P.G.

P.G. Menon, K.W Michel. “Ultraviolet Absorption of Ammonia at High Temperatures Behind Shock Waves”. J. Phys. Chem. 1967; 71(10): 3280–3284.

Metsälä, M.

O. Vaittinen, M. Metsälä, S. Persijn, et al. “Adsorption of Ammonia on Treated Stainless Steel and Polymer Surfaces”. Appl. Phys. B. 2014; 115(2): 185–196.

Michel, K.W

P.G. Menon, K.W Michel. “Ultraviolet Absorption of Ammonia at High Temperatures Behind Shock Waves”. J. Phys. Chem. 1967; 71(10): 3280–3284.

Mimoto, R.

A. Hayakawa, Y. Arakawa, R. Mimoto, et al. “Experimental Investigation of Stabilization and Emission Characteristics of Ammonia/Air Premixed Flames in a Swirl Combustor”. Int. J. Hydrogen Energy. 2017; 42(19): 14010–14018.

Muzio, L.

L. Muzio, G. Quartucy, J. Cichanowiczy. “Overview and Status of Post-Combustion NOx Control: SNCR, SCR and Hybrid Technologies”. Int. J. Environ. Pollut. 2002; 17(1–2): 4–30.

Naito, Y.

E.C. Okafor, Y. Naito, S. Colson, et al. “Measurement and Modelling of the Laminar Burning Velocity of Methane–Ammonia–Air Flames at High Pressures Using a Reduced Reaction Mechanism”. Combust. Flame. 2019; 204: 162–175.

E.C. Okafor, Y. Naito, S. Colson, et al. “Experimental and Numerical Study of the Laminar Burning Velocity of CH4–NH3–Air Premixed Flames”. Combust. Flame. 2018; 187: 185–198.

Okafor, E.C.

E.C. Okafor, Y. Naito, S. Colson, et al. “Measurement and Modelling of the Laminar Burning Velocity of Methane–Ammonia–Air Flames at High Pressures Using a Reduced Reaction Mechanism”. Combust. Flame. 2019; 204: 162–175.

E.C. Okafor, K.D.K.A. Somarathne, A. Hayakawa, et al. “Towards the Development of an Efficient Low-NOx Ammonia Combustor for a Micro Gas Turbine”. Proc. Combust. Inst. 2019; 37(4): 4597–4606.

E.C. Okafor, Y. Naito, S. Colson, et al. “Experimental and Numerical Study of the Laminar Burning Velocity of CH4–NH3–Air Premixed Flames”. Combust. Flame. 2018; 187: 185–198.

Owen, K.

K. Owen, E. Es-Sebbar, A. Farooq. “Measurements of NH3 Linestrengths and Collisional Broadening Coefficients in N2, O2, CO2, and H2O Near 1103.46 cm−1”. J. Quant. Spectrosc. Radiat. Transfer. 2013; 121: 56–68.

Owen-Jones, M.

A. Valera-Medina, H. Xiao, M. Owen-Jones, et al. “Ammonia for Power”. Prog. Energy Combust. Sci. 2018; 69: 63–102.

Peng, W.Y.

R. Sur, R.M. Spearrin, W.Y. Peng, et al. “Line Intensities and Temperature-Dependent Line Broadening Coefficients of Q-Branch Transitions in the V2 Band of Ammonia Near 10.4 µm”. J. Quant. Spectrosc. Radiat. Transfer. 2016; 175: 90–99.

Persijn, S.

O. Vaittinen, M. Metsälä, S. Persijn, et al. “Adsorption of Ammonia on Treated Stainless Steel and Polymer Surfaces”. Appl. Phys. B. 2014; 115(2): 185–196.

Pohorelý, M.

M. Jeremiáš, M. Pohořelý, P. Bode, et al. “Ammonia Yield from Gasification of Biomass and Coal in Fluidized Bed Reactor”. Fuel. 2014; 117(PARTB): 917–925.

Quartucy, G.

L. Muzio, G. Quartucy, J. Cichanowiczy. “Overview and Status of Post-Combustion NOx Control: SNCR, SCR and Hybrid Technologies”. Int. J. Environ. Pollut. 2002; 17(1–2): 4–30.

Reeves, R.R.

B.A. Thompson, P. Harteck, R.R. Reeves. “Ultraviolet Absorption Coefficients of CO2, CO, O2, H2O, N2O, NH3, NO, SO2, and CH4 Between 1850 and 4000 A”. J. Geophys. Res. 1963; 68(24): 6431–6436.

Ren, Q.

Q. Ren, C. Zhao. “Evolution of Fuel-N in Gas Phase During Biomass Pyrolysis”. Renewable Sustainable Energy Rev. 2015; 50: 408–418.

Rocha, R.C.

R.C. Rocha, M. Costa, X.-S Bai. “Combustion and Emission Characteristics of Ammonia Under Conditions Relevant to Modern Gas Turbines”. Combust. Sci. Technol. 2020, pp. 1–20.

Rosén, A

J. Mellqvist, A. Rosén. “DOAS for Flue Gas Monitoring: II. Deviations from the Beer–Lambert Law for the UV/Visible Absorption Spectra of NO, NO2, SO2 and NH3”. J. Quant. Spectrosc. Radiat. Transfer. 1996; 56(2): 209–224.

J. Mellqvist. A. Rosén. “DOAS for Flue Gas Monitoring—I. Temperature Effects in the U.V./Visible Absorption Spectra of NO, NO2, SO2, and NH3”. J. Quant. Spectrosc. Radiat. Transfer. 1996; 56(2): 187–208.

J. Mellqvist, H. Axelsson, A. Rosén. “DOAS for Flue Gas Monitoring: III. In-Situ Monitoring of Sulfur Dioxide, Nitrogen Monoxide, and Ammonia”. J. Quant. Spectrosc. Radiat. Transfer. 1996; 56(2): 225–240.

Sahlberg, A.L.

A.L. Sahlberg, D. Hot, M. Aldén, et al. “Non-Intrusive, in Situ Detection of Ammonia in Hot Gas Flows with Mid-Infrared Degenerate Four-Wave Mixing at 2.3 µm”. J. Raman Spectrosc. 2016; 47(9): 1140–1148.

Somarathne, K.D.

H. Kobayashi, A. Hayakawa, K.D. Somarathne, et al. “Science and Technology of Ammonia Combustion”. Proc. Combust. Inst. 2019; 37(1): 109–133.

Somarathne, K.D.K.A.

E.C. Okafor, K.D.K.A. Somarathne, A. Hayakawa, et al. “Towards the Development of an Efficient Low-NOx Ammonia Combustor for a Micro Gas Turbine”. Proc. Combust. Inst. 2019; 37(4): 4597–4606.

Spearrin, R.M.

R. Sur, R.M. Spearrin, W.Y. Peng, et al. “Line Intensities and Temperature-Dependent Line Broadening Coefficients of Q-Branch Transitions in the V2 Band of Ammonia Near 10.4 µm”. J. Quant. Spectrosc. Radiat. Transfer. 2016; 175: 90–99.

Steadman, J

J.A. Syage, R.B. Cohen, J. Steadman. “Spectroscopy and Dynamics of Jet-Cooled Hydrazines and Ammonia. I. Single-Photon Absorption and Ionization Spectra”. J. Chem. Phys. 1992; 97(9): 6072–6084.

Stritzke, F.

F. Stritzke, O. Diemel, S. Wagner. “TDLAS-Based NH3 Mole Fraction Measurement for Exhaust Diagnostics During Selective Catalytic Reduction Using a Fiber-Coupled 2.2-µm DFB Diode Laser”. Appl. Phys. B. 2015; 119(1): 143–152.

Sun, Z.

B. Li, Z. Sun, Z. Li, et al. “Post-Flame Gas-Phase Sulfation of Potassium Chloride”. Combust. Flame. 2013; 160(5): 959–969.

Sur, R.

R. Sur, R.M. Spearrin, W.Y. Peng, et al. “Line Intensities and Temperature-Dependent Line Broadening Coefficients of Q-Branch Transitions in the V2 Band of Ammonia Near 10.4 µm”. J. Quant. Spectrosc. Radiat. Transfer. 2016; 175: 90–99.

Suto, M.

M. Suto, L.C Lee. “Photodissociation of NH3 at 106–200 nm”. J. Chem. Phys. 1983; 78(7): 4515–4522.

Syage, J.A.

J.A. Syage, R.B. Cohen, J. Steadman. “Spectroscopy and Dynamics of Jet-Cooled Hydrazines and Ammonia. I. Single-Photon Absorption and Ionization Spectra”. J. Chem. Phys. 1992; 97(9): 6072–6084.

Tannenbaum, E.

E. Tannenbaum, E.M. Coffin, A.J Harrison. “The Far Ultraviolet Absorption Spectra of Simple Alkyl Amines”. J. Chem. Phys. 1953; 21(2): 311–318.

Thompson, B.A.

B.A. Thompson, P. Harteck, R.R. Reeves. “Ultraviolet Absorption Coefficients of CO2, CO, O2, H2O, N2O, NH3, NO, SO2, and CH4 Between 1850 and 4000 A”. J. Geophys. Res. 1963; 68(24): 6431–6436.

Vaittinen, O.

O. Vaittinen, M. Metsälä, S. Persijn, et al. “Adsorption of Ammonia on Treated Stainless Steel and Polymer Surfaces”. Appl. Phys. B. 2014; 115(2): 185–196.

Valera-Medina, A.

A. Valera-Medina, H. Xiao, M. Owen-Jones, et al. “Ammonia for Power”. Prog. Energy Combust. Sci. 2018; 69: 63–102.

Vitovec, W.M.

S.G. Buckley, C.J. Damm, W.M. Vitovec, et al. “Ammonia Detection and Monitoring with Photofragmentation Fluorescence”. Appl. Opt. 1998; 37(36): 8382–8391.

Wagner, S

F. Stritzke, O. Diemel, S. Wagner. “TDLAS-Based NH3 Mole Fraction Measurement for Exhaust Diagnostics During Selective Catalytic Reduction Using a Fiber-Coupled 2.2-µm DFB Diode Laser”. Appl. Phys. B. 2015; 119(1): 143–152.

Wang, Z.

X. Han, Z. Wang, Y. He, et al. “The Temperature Dependence of the Laminar Burning Velocity and Superadiabatic Flame Temperature Phenomenon for NH3/Air Flames”. Combust. Flame. 2020; 217: 314–320.

X. Han, Z. Wang, Y. He, et al. “Experimental and Kinetic Modeling Study of Laminar Burning Velocities of NH3/Syngas/Air Premixed Flames”. Combust. Flame. 2020; 213: 1–13.

X. Han, Z. Wang, M. Costa, et al. “Experimental and Kinetic Modeling Study of Laminar Burning Velocities of NH3/Air, NH3/H2/Air, NH3/CO/Air and NH3/CH4/Air Premixed Flames”. Combust. Flame. 2019; 206: 214–226.

Watanabe, K

K Watanabe. “Photoionization and Total Absorption Cross Section of Gases. I. Ionization Potentials of Several Molecules. Cross Sections of NH3 and NO”. J. Chem. Phys. 1954; 22(9): 1564–1570.

Webber, M.E.

M.E. Webber, D.S. Baer, R.K Hanson. “Ammonia Monitoring Near 1.5 µm with Diode-Laser Absorption Sensors”. Appl. Opt. 2001; 40(12): 2031–2042.

Weng, W.

W. Weng, Y. Zhang, H. Wu, et al. “Optical Measurements of KOH, KCl, K. for Quantitative K–Cl Chemistry in Thermochemical Conversion Processes”. Fuel. 2020; 271: 117643.

W. Weng, Z. Li, H. Wu, et al. “Quantitative K–Cl–S Chemistry in Thermochemical Conversion Processes Using in Situ Optical Diagnostics”. Proc. Combust. Inst. 2020. in press. doi: 10.1016/j.proci.2020.05.058.

W. Weng, M. Aldén, Z. Li. “Quantitative SO2 Detection in Combustion Environments Using Broad Band Ultraviolet Absorption and Laser-Induced Fluorescence”. Anal. Chem. 2019; 91(16): 10849–10855.

W. Weng, C. Brackmann, T. Leffler, et al. “Ultraviolet Absorption Cross Sections of KOH and KCl for Nonintrusive Species-Specific Quantitative Detection in Hot Flue Gases”. Anal. Chem. 2019; 91(7): 4719–4726.

W. Weng, J. Borggren, B. Li, et al. “Novel Multi-Jet Burner for Hot Flue Gases of Wide Range of Temperatures and Compositions for Optical Diagnostics of Solid Fuels Gasification/Combustion”. Rev. Sci. Instrum. 2017; 88(4): 045104.

J. Borggren, W. Weng, A. Hosseinnia, et al. “Diode Laser-Based Thermometry Using Two-Line Atomic Fluorescence of Indium and Gallium”. Appl. Phys. B. 2017; 123(12): 278.

Westblom, U.

U. Westblom. M. Aldén. “Laser-Induced Fluorescence Detection of NH3 in Flames with the Use of Two-Photon Excitation”. Appl. Spectrosc. 1990; 44(5): 881–886.

Williams, A.

A. Williams, J.M. Jones, L. Ma, et al. “Pollutants from the Combustion of Solid Biomass Fuels”. Prog. Energy Combust. Sci. 2012; 38(2): 113–137.

Wu, C.Y.R.

F.Z. Chen, D.L. Judge, C.Y.R. Wu, et al. “Low and Room Temperature Photoabsorption Cross Sections of NH3 in the UV Region”. Planet. Space Sci. 1998; 47(1): 261–266.

Wu, H.

W. Weng, Z. Li, H. Wu, et al. “Quantitative K–Cl–S Chemistry in Thermochemical Conversion Processes Using in Situ Optical Diagnostics”. Proc. Combust. Inst. 2020. in press. doi: 10.1016/j.proci.2020.05.058.

W. Weng, Y. Zhang, H. Wu, et al. “Optical Measurements of KOH, KCl, K. for Quantitative K–Cl Chemistry in Thermochemical Conversion Processes”. Fuel. 2020; 271: 117643.

Xiao, H.

A. Valera-Medina, H. Xiao, M. Owen-Jones, et al. “Ammonia for Power”. Prog. Energy Combust. Sci. 2018; 69: 63–102.

Zhang, D.

D. Zhang, Q. Gao, B. Li, et al. “Ammonia Measurements with Femtosecond Laser-Induced Plasma Spectroscopy”. Appl. Opt. 2019; 58(5): 1210–1214.

D. Zhang, Q. Gao, B. Li, et al. “Instantaneous One-Dimensional Ammonia Measurements with Femtosecond Two-Photon Laser-Induced Fluorescence (Fs-TPLIF)”. Int. J. Hydrogen Energy. 2019; 44(47): 25740–25745.

Zhang, Y.

W. Weng, Y. Zhang, H. Wu, et al. “Optical Measurements of KOH, KCl, K. for Quantitative K–Cl Chemistry in Thermochemical Conversion Processes”. Fuel. 2020; 271: 117643.

Zhao, C

Q. Ren, C. Zhao. “Evolution of Fuel-N in Gas Phase During Biomass Pyrolysis”. Renewable Sustainable Energy Rev. 2015; 50: 408–418.

Zhou, B.

C. Brackmann, O. Hole, B. Zhou, et al. “Characterization of Ammonia Two-Photon Laser-Induced Fluorescence for Gas-Phase Diagnostics”. Appl. Phys. B. 2014; 115(1): 25–33.

Ziegler, L.D

L.D. Ziegler. “Rovibronic Absorption Analysis of the A∼X∼ Transition of Ammonia”. J. Chem. Phys. 1985; 82(2): 664–669.

Anal. Chem (2)

W. Weng, M. Aldén, Z. Li. “Quantitative SO2 Detection in Combustion Environments Using Broad Band Ultraviolet Absorption and Laser-Induced Fluorescence”. Anal. Chem. 2019; 91(16): 10849–10855.

W. Weng, C. Brackmann, T. Leffler, et al. “Ultraviolet Absorption Cross Sections of KOH and KCl for Nonintrusive Species-Specific Quantitative Detection in Hot Flue Gases”. Anal. Chem. 2019; 91(7): 4719–4726.

Appl. Opt (4)

M.E. Webber, D.S. Baer, R.K Hanson. “Ammonia Monitoring Near 1.5 µm with Diode-Laser Absorption Sensors”. Appl. Opt. 2001; 40(12): 2031–2042.

S.G. Buckley, C.J. Damm, W.M. Vitovec, et al. “Ammonia Detection and Monitoring with Photofragmentation Fluorescence”. Appl. Opt. 1998; 37(36): 8382–8391.

D. Zhang, Q. Gao, B. Li, et al. “Ammonia Measurements with Femtosecond Laser-Induced Plasma Spectroscopy”. Appl. Opt. 2019; 58(5): 1210–1214.

J. Henningsen, N. Melander. “Sensitive Measurement of Adsorption Dynamics with Nonresonant Gas Phase Photoacoustics”. Appl. Opt. 1997; 36(27): 7037–7045.

Appl. Phys. B (5)

O. Vaittinen, M. Metsälä, S. Persijn, et al. “Adsorption of Ammonia on Treated Stainless Steel and Polymer Surfaces”. Appl. Phys. B. 2014; 115(2): 185–196.

J. Borggren, W. Weng, A. Hosseinnia, et al. “Diode Laser-Based Thermometry Using Two-Line Atomic Fluorescence of Indium and Gallium”. Appl. Phys. B. 2017; 123(12): 278.

C. Brackmann, O. Hole, B. Zhou, et al. “Characterization of Ammonia Two-Photon Laser-Induced Fluorescence for Gas-Phase Diagnostics”. Appl. Phys. B. 2014; 115(1): 25–33.

F. Stritzke, O. Diemel, S. Wagner. “TDLAS-Based NH3 Mole Fraction Measurement for Exhaust Diagnostics During Selective Catalytic Reduction Using a Fiber-Coupled 2.2-µm DFB Diode Laser”. Appl. Phys. B. 2015; 119(1): 143–152.

N. Georgiev, M. Aldén. “Two-Photon Degenerate Four-Wave Mixing (DFWM) for the Detection of Ammonia: Applications to Flames”. Appl. Phys. B. 1993; 56(5): 281–286.

Appl. Spectrosc (1)

U. Westblom. M. Aldén. “Laser-Induced Fluorescence Detection of NH3 in Flames with the Use of Two-Photon Excitation”. Appl. Spectrosc. 1990; 44(5): 881–886.

Astrophys. J (1)

B.M. Cheng, H.C. Lu, H.K. Chen, et al. “Absorption Cross Sections of NH3, NH2D, NHD2, and ND3 in the Spectral Range 140–220 nm and Implications for Planetary Isotopic Fractionation”. Astrophys. J. 2006; 647(2): 1535–1542.

Combust. Flame (7)

E.C. Okafor, Y. Naito, S. Colson, et al. “Experimental and Numerical Study of the Laminar Burning Velocity of CH4–NH3–Air Premixed Flames”. Combust. Flame. 2018; 187: 185–198.

B. Li, Z. Sun, Z. Li, et al. “Post-Flame Gas-Phase Sulfation of Potassium Chloride”. Combust. Flame. 2013; 160(5): 959–969.

L. Dai, S. Gersen, P. Glarborg, et al. “Experimental and Numerical Analysis of the Autoignition Behavior of NH3 and NH3/H2 Mixtures at High Pressure”. Combust. Flame. 2020; 215: 134–144.

X. Han, Z. Wang, M. Costa, et al. “Experimental and Kinetic Modeling Study of Laminar Burning Velocities of NH3/Air, NH3/H2/Air, NH3/CO/Air and NH3/CH4/Air Premixed Flames”. Combust. Flame. 2019; 206: 214–226.

X. Han, Z. Wang, Y. He, et al. “The Temperature Dependence of the Laminar Burning Velocity and Superadiabatic Flame Temperature Phenomenon for NH3/Air Flames”. Combust. Flame. 2020; 217: 314–320.

X. Han, Z. Wang, Y. He, et al. “Experimental and Kinetic Modeling Study of Laminar Burning Velocities of NH3/Syngas/Air Premixed Flames”. Combust. Flame. 2020; 213: 1–13.

E.C. Okafor, Y. Naito, S. Colson, et al. “Measurement and Modelling of the Laminar Burning Velocity of Methane–Ammonia–Air Flames at High Pressures Using a Reduced Reaction Mechanism”. Combust. Flame. 2019; 204: 162–175.

Combust. Sci. Technol (1)

R.C. Rocha, M. Costa, X.-S Bai. “Combustion and Emission Characteristics of Ammonia Under Conditions Relevant to Modern Gas Turbines”. Combust. Sci. Technol. 2020, pp. 1–20.

Energy (1)

M.F. Ezzat, I. Dincer. “Energy and Exergy Analyses of a Novel Ammonia Combined Power Plant Operating with Gas Turbine and Solid Oxide Fuel Cell Systems”. Energy. 2020; 194: 116750.

Energy Fuels (1)

J. Liu, Q. Gao, B. Li, et al. “Ammonia Measurements with Femtosecond Two-Photon Laser-Induced Fluorescence in Premixed NH3/Air Flames”. Energy Fuels. 2020; 34(2): 1177–1183.

Fuel (2)

M. Jeremiáš, M. Pohořelý, P. Bode, et al. “Ammonia Yield from Gasification of Biomass and Coal in Fluidized Bed Reactor”. Fuel. 2014; 117(PARTB): 917–925.

W. Weng, Y. Zhang, H. Wu, et al. “Optical Measurements of KOH, KCl, K. for Quantitative K–Cl Chemistry in Thermochemical Conversion Processes”. Fuel. 2020; 271: 117643.

Fuel Process. Technol (1)

J. Leppälahti, T. Koljonen. “Nitrogen Evolution from Coal, Peat and Wood During Gasification: Literature Review”. Fuel Process. Technol. 1995; 43(1): 1–45.

Int. J. Environ. Pollut (1)

L. Muzio, G. Quartucy, J. Cichanowiczy. “Overview and Status of Post-Combustion NOx Control: SNCR, SCR and Hybrid Technologies”. Int. J. Environ. Pollut. 2002; 17(1–2): 4–30.

Int. J. Hydrogen Energy (3)

P. Dimitriou, R. Javaid. “A Review of Ammonia as a Compression Ignition Engine Fuel”. Int. J. Hydrogen Energy. 2020; 45(11): 7098–7118.

D. Zhang, Q. Gao, B. Li, et al. “Instantaneous One-Dimensional Ammonia Measurements with Femtosecond Two-Photon Laser-Induced Fluorescence (Fs-TPLIF)”. Int. J. Hydrogen Energy. 2019; 44(47): 25740–25745.

A. Hayakawa, Y. Arakawa, R. Mimoto, et al. “Experimental Investigation of Stabilization and Emission Characteristics of Ammonia/Air Premixed Flames in a Swirl Combustor”. Int. J. Hydrogen Energy. 2017; 42(19): 14010–14018.

J. Chem. Phys (6)

J.A. Syage, R.B. Cohen, J. Steadman. “Spectroscopy and Dynamics of Jet-Cooled Hydrazines and Ammonia. I. Single-Photon Absorption and Ionization Spectra”. J. Chem. Phys. 1992; 97(9): 6072–6084.

M. Suto, L.C Lee. “Photodissociation of NH3 at 106–200 nm”. J. Chem. Phys. 1983; 78(7): 4515–4522.

K Watanabe. “Photoionization and Total Absorption Cross Section of Gases. I. Ionization Potentials of Several Molecules. Cross Sections of NH3 and NO”. J. Chem. Phys. 1954; 22(9): 1564–1570.

E. Tannenbaum, E.M. Coffin, A.J Harrison. “The Far Ultraviolet Absorption Spectra of Simple Alkyl Amines”. J. Chem. Phys. 1953; 21(2): 311–318.

L.D. Ziegler. “Rovibronic Absorption Analysis of the A∼X∼ Transition of Ammonia”. J. Chem. Phys. 1985; 82(2): 664–669.

P. Limão-Vieira, N.C. Jones, S.V. Hoffmann, et al. “Revisiting the Photoabsorption Spectrum of NH3 in the 5.4–10.8 eV Energy Region”. J. Chem. Phys. 2019; 151(18): 184302.

J. Geophys. Res (1)

B.A. Thompson, P. Harteck, R.R. Reeves. “Ultraviolet Absorption Coefficients of CO2, CO, O2, H2O, N2O, NH3, NO, SO2, and CH4 Between 1850 and 4000 A”. J. Geophys. Res. 1963; 68(24): 6431–6436.

J. Phys. Chem (1)

P.G. Menon, K.W Michel. “Ultraviolet Absorption of Ammonia at High Temperatures Behind Shock Waves”. J. Phys. Chem. 1967; 71(10): 3280–3284.

J. Quant. Spectrosc. Radiat. Transfer (6)

D.F. Davidson, A.Y. Chang, K. Kohse-Höinghaus, et al. “High Temperature Absorption Coefficients of O2, NH3, and H2O for Broadband ArF Excimer Laser Radiation”. J. Quant. Spectrosc. Radiat. Transfer. 1989; 42(4): 267–278.

K. Owen, E. Es-Sebbar, A. Farooq. “Measurements of NH3 Linestrengths and Collisional Broadening Coefficients in N2, O2, CO2, and H2O Near 1103.46 cm−1”. J. Quant. Spectrosc. Radiat. Transfer. 2013; 121: 56–68.

R. Sur, R.M. Spearrin, W.Y. Peng, et al. “Line Intensities and Temperature-Dependent Line Broadening Coefficients of Q-Branch Transitions in the V2 Band of Ammonia Near 10.4 µm”. J. Quant. Spectrosc. Radiat. Transfer. 2016; 175: 90–99.

J. Mellqvist. A. Rosén. “DOAS for Flue Gas Monitoring—I. Temperature Effects in the U.V./Visible Absorption Spectra of NO, NO2, SO2, and NH3”. J. Quant. Spectrosc. Radiat. Transfer. 1996; 56(2): 187–208.

J. Mellqvist, A. Rosén. “DOAS for Flue Gas Monitoring: II. Deviations from the Beer–Lambert Law for the UV/Visible Absorption Spectra of NO, NO2, SO2 and NH3”. J. Quant. Spectrosc. Radiat. Transfer. 1996; 56(2): 209–224.

J. Mellqvist, H. Axelsson, A. Rosén. “DOAS for Flue Gas Monitoring: III. In-Situ Monitoring of Sulfur Dioxide, Nitrogen Monoxide, and Ammonia”. J. Quant. Spectrosc. Radiat. Transfer. 1996; 56(2): 225–240.

J. Raman Spectrosc (1)

A.L. Sahlberg, D. Hot, M. Aldén, et al. “Non-Intrusive, in Situ Detection of Ammonia in Hot Gas Flows with Mid-Infrared Degenerate Four-Wave Mixing at 2.3 µm”. J. Raman Spectrosc. 2016; 47(9): 1140–1148.

Planet. Space Sci (1)

F.Z. Chen, D.L. Judge, C.Y.R. Wu, et al. “Low and Room Temperature Photoabsorption Cross Sections of NH3 in the UV Region”. Planet. Space Sci. 1998; 47(1): 261–266.

Proc. Combust. Inst (4)

W. Weng, Z. Li, H. Wu, et al. “Quantitative K–Cl–S Chemistry in Thermochemical Conversion Processes Using in Situ Optical Diagnostics”. Proc. Combust. Inst. 2020. in press. doi: 10.1016/j.proci.2020.05.058.

H. Kobayashi, A. Hayakawa, K.D. Somarathne, et al. “Science and Technology of Ammonia Combustion”. Proc. Combust. Inst. 2019; 37(1): 109–133.

O. Kurata, N. Iki, T. Inoue, et al. “Development of a Wide Range-Operable, Rich-Lean Low-NOx Combustor for NH3 Fuel Gas-Turbine Power Generation”. Proc. Combust. Inst. 2019; 37(4): 4587–4595.

E.C. Okafor, K.D.K.A. Somarathne, A. Hayakawa, et al. “Towards the Development of an Efficient Low-NOx Ammonia Combustor for a Micro Gas Turbine”. Proc. Combust. Inst. 2019; 37(4): 4597–4606.

Prog. Energy Combust. Sci (3)

P. Glarborg, A.D. Jensen, J.E Johnsson. “Fuel Nitrogen Conversion in Solid Fuel Fired Systems”. Prog. Energy Combust. Sci. 2003; 29(2): 89–113.

A. Williams, J.M. Jones, L. Ma, et al. “Pollutants from the Combustion of Solid Biomass Fuels”. Prog. Energy Combust. Sci. 2012; 38(2): 113–137.

A. Valera-Medina, H. Xiao, M. Owen-Jones, et al. “Ammonia for Power”. Prog. Energy Combust. Sci. 2018; 69: 63–102.

Renewable Sustainable Energy Rev (1)

Q. Ren, C. Zhao. “Evolution of Fuel-N in Gas Phase During Biomass Pyrolysis”. Renewable Sustainable Energy Rev. 2015; 50: 408–418.

Rev. Sci. Instrum (1)

W. Weng, J. Borggren, B. Li, et al. “Novel Multi-Jet Burner for Hot Flue Gases of Wide Range of Temperatures and Compositions for Optical Diagnostics of Solid Fuels Gasification/Combustion”. Rev. Sci. Instrum. 2017; 88(4): 045104.

Other (3)

Reaction Design. Chemkin-Pro 15131. https://personal.ems.psu.edu/∼radovic/ChemKin_Tutorial_2-3-7.pdf [accessed Jan 7 2021].

LIFBASE. Version 2.1. 2013. https://archive.sri.com/engage/products-solutions/lifbase.

C.M. Western. PGOPHER Version 10.1. 2018. http://pgopher.chm.bris.ac.uk/ [accessed Jan 7 2021].

Supplementary Material (2)

NameDescription
Supplement 1       sj-pdf-1-asp-10.1177_0003702821990445 - Supplemental material for Ultraviolet Absorption Cross-Sections of Ammonia at Elevated Temperatures for Nonintrusive Quantitative Detection in Combustion Environments
Supplement 2       sj-xlsx-2-asp-10.1177_0003702821990445 - Supplemental material for Ultraviolet Absorption Cross-Sections of Ammonia at Elevated Temperatures for Nonintrusive Quantitative Detection in Combustion Environments

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.