Abstract

In this study, one of the thermoresponsive polymers, block copolymer consisting of poly(ethylene glycol) and poly(N-isopropylacylamide), was investigated using Fourier transform infrared (FT-IR) spectroscopy, principal component analysis (PCA), and two-dimensional correlation spectroscopy (2D-COS). The apparent trend of the spectral changes in the temperature-dependent FT-IR spectra of poly(ethylene glycol)-block-poly(N-isopropylacylamide) (PEG-b-PNiPAAm) hydrogel during the heating process looks similar to that during the cooling process. The results of the PCA and 2D-COS, however, clearly indicate an irreversible phase transition mechanism of PEG-b-PNiPAAm hydrogel during the heating and cooling processes. It has been also shown that PEG affects the phase transition mechanism of PEG-b-PNiPAAm hydrogel, especially during the heating process. Consequently, we can successfully determine the phase transition temperature and the mechanism of PEG-b-PNiPAAm hydrogel during the heating and cooling processes using PCA and 2D-COS, respectively.

© 2021 The Author(s)

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription