Abstract

We investigated the near-infrared spectrum of piperine using quantum mechanical calculations. We evaluated two efficient approaches, DVPT2//PM6 and DVPT2//ONIOM [PM6:B3LYP/6-311++G(2df, 2pd)] that yielded a simulated spectrum with varying accuracy versus computing time factor. We performed vibrational assignments and unveiled complex nature of the near-infrared spectrum of piperine, resulting from a high level of band convolution. The most meaningful contribution to the near-infrared absorption of piperine results from binary combination bands. With the available detailed near-infrared assignment of piperine, we interpreted the properties of partial least square regression models constructed in our earlier study to describe the piperine content in black pepper samples. Two models were compared with spectral data sets obtained with a benchtop and a miniaturized spectrometer. The two spectrometers implement distinct technology which leads to a profound instrumental difference and discrepancy in the predictive performance when analyzing piperine content. We concluded that the sensitivity of the two instruments to certain types of piperine vibrations is different and that the benchtop spectrometer unveiled higher selectivity. Such difference in obtaining chemical information from a sample can be one of the reasons why the benchtop spectrometer performs better in analyzing the piperine content of black pepper. This evidenced direct correspondence between the features critical for applied near-infrared spectroscopic routine and the underlying vibrational properties of the analyzed constituent in a complex sample.

© 2021 The Author(s)

PDF Article

References

  • View by:

  1. Y. Ozaki, C.W. Huck, K.B. Beć. “Near-IR Spectroscopy and Its Applications”. In: V.P. Gupta, editor. Molecular and Laser Spectroscopy. San Diego: Elsevier, 2018. Chap. 3, Pp. 11–38. doi: 10.1016/B978-0-12-849883-5.00002-4.
  2. H.W. Siesler, Y. Ozaki, S. Kawata, H.M. Heise. Near-Infrared Spectroscopy: Principles, Instruments, Applications. Weinheim, Germany: Wiley-VCH, 2002. doi: 10.1002/9783527612666.
  3. Y. Ozaki, W.F. McClure, A.A. Christy. Near Infrared Spectroscopy in Food Science and Technology. New York: Wiley Interscience, 2006. doi:10.1002/0470047704.
  4. E.W. Ciurczak, J.K. Drennen III. Pharmaceutical and Medical Applications of Near-Infrared Spectroscopy. Boca Raton, Florida: CRC Press, 2002. doi: 10.1201/9780203910153.
  5. M. Manley, P.J. Williams. “Applications: Food Science” In: Y. Ozaki, C.W. Huck, S. Tsuchikawa, S.B. Engelsen, editors. Near-Infrared Spectroscopy: Theory, Spectral Analysis, Instrumentation, and Applications. Singapore: Springer Nature, 2021. Chap. 15, Pp. 347–359. doi: 10.1007/978-981-15-8648-4_15.
  6. V.K. Truong, J. Chapman, D. Cozzolino. “Monitoring the Bacterial Response to Antibiotic and Time Growth Using Near-Infrared Spectroscopy Combined with Machine Learning”. Food Anal. Methods. 2021. Online only print. doi: 10.1007/s12161-021-01994-6.
  7. K.B. Becć, J. Grabska, C.W. Huck. “NIR Spectral Analysis of Natural Medicines Supported by Novel Instrumentation, Methods of Data Analysis and Interpretation”. J. Pharm. Biomed. Anal. 2020. 193: 113686. doi: 10.1016/j.jpba.2020.113686.
  8. V. Baeten, P. Dardenne. “Application of NIR in Agriculture”. In: Y. Ozaki, C.W. Huck, S. Tsuchikawa, S.B. Engelsen, editors. Near-Infrared Spectroscopy: Theory, Spectral Analysis, Instrumentation, and Applications. Singapore: Springer Nature, 2021. Chap. 14, Pp. 331–345. doi: 10.1007/978-981-15-8648-4_14.
  9. E. Bobasa, A.D.T. Phan, M. Netzel, H.E. Smyth, et al. “The Use of a Micro Near Infrared Portable Instrument to Predict Bioactive Compounds in a Wild Harvested Fruit: Kakadu Plum (Terminalia ferdinandiana)”. Sensors. 2021. 21(4):1413. doi: 10.3390/s21041413.
  10. D. Tjandra Nugraha, J.-L. Zinia Zaukuu, J.P. Aguinaga Bósquez, Z. Bodor, et al. “Near-Infrared Spectroscopy and Aquaphotomics for Monitoring Mung Bean (Vigna radiata) Sprout Growth and Validation of Ascorbic Acid Content”. Sensors. 2021. 21(2): 611. doi: 10.3390/s21020611.
  11. B. Igne, E.W. Ciurczak, “Near-Infrared Spectroscopy in the Pharmaceutical Industry”. In: Y. Ozaki, C.W. Huck, S. Tsuchikawa, S.B. Engelsen, editors. Near-Infrared Spectroscopy. Theory, Spectral Analysis, Instrumentation, and Applications. Singapore: Springer Nature, 2021. Chap. 18, Pp. 391–412. doi: 10.1007/978-981-15-8648-4_18.
  12. T. Scherzer, “Applications of NIR Techniques in Polymer Coatings and Synthetic Textiles”. In: Y. Ozaki, C.W. Huck, S. Tsuchikawa, S.B. Engelsen, editors. Near-Infrared Spectroscopy. Theory, Spectral Analysis, Instrumentation, and Applications. Singapore: Springer Nature, 2021. Chap. 21, Pp. 475–516. doi: 10.1007/978-981-15-8648-4_21.
  13. O.M.D. Lutz, G.K. Bonn, B.M. Rode, C.W. Huck. “Reproducible Quantification of Ethanol in Gasoline via a Customized Mobile Near-Infrared Spectrometer”. Anal. Chim. Acta. 2014. 826: 61–68. doi: 10.1016/j.aca.2014.04.002.
  14. M.A. Czarnecki, Y. Morisawa, Y. Futami, Y. Ozaki. “Advances in Molecular Structure and Interaction Studies Using Near-Infrared Spectroscopy”. Chem. Rev. 2015. 115(18): 9707–9744. doi: 10.1021/cr500013u.
  15. M.A. Czarnecki, K.B. Beć, J. Grabska, T.S. Hofer, et al. “Overview of Application of NIR Spectroscopy to Physical Chemistry”. In: Y. Ozaki, C.W. Huck, S. Tsuchikawa, S.B. Engelsen, editors. Near-Infrared Spectroscopy. Theory, Spectral Analysis, Instrumentation, and Applications. Singapore: Springer Nature, 2021. Chap. 13, Pp. 297–330. doi: 10.1007/978-981-15-8648-4_13.
  16. K.B. Becć, J. Grabska, T.S. Hofer. “Introduction to Quantum Vibrational Spectroscopy”. In: Y. Ozaki, C.W. Huck, S. Tsuchikawa, S.B. Engelsen, editors. Near-Infrared Spectroscopy. Theory, Spectral Analysis, Instrumentation, and Applications. Singapore: Springer Nature, 2021. Chap. 5, Pp. 83–110. doi: 10.1007/978-981-15-8648-4_5.
  17. K.B. Becć and C.W. Huck. “Breakthrough Potential in Near-Infrared Spectroscopy: Spectra Simulation. A Review of Recent Developments”. Front. Chem. 2019. 7: 48doi: 10.3389/fchem.2019.00048.
  18. E. Bright Wilson, Jr., J.C. Decius, P.C. Cross. “Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra”. New York: Dover Publications, Inc., 1980.
  19. F.S. Levin. “An Introduction to Quantum Theory”. Cambridge: University Press, 2002. doi: 10.1017/CBO9781139164177.
  20. K.B. Becć, J. Grabska, C.W. Huck. “Current and Future Research Directions in Computer-Aided Near-Infrared Spectroscopy: A Perspective”. Spectrochim. Acta, Part A. 2021. 254: 119625. doi: 10.1016/j.saa.2021.119625.
  21. R. Iwamoto. “Near-Infrared Spectroscopy as a Useful Tool for Analysis in Solution in Common Organic Solvents”. Appl. Spectrosc. 2009. 63(3): 354−362. doi: 10.1366/000370209787598942.
  22. L.G. Weyer, S.C. Lo. “Spectra-Structure Correlations in the Near-Infrared”. In: J.M. Chalmers, P.R. Griffiths, editors. Handbook of Vibrational Spectroscopy. Chichester, UK: John Wiley and Sons, Ltd, 2006. Pp. 1817–1837. doi: 10.1002/0470027320.s4102.
  23. I. Noda. “Generalized Two-Dimensional Correlation Method Applicable to Infrared, Raman, and Other Types of Spectroscopy”. Appl. Spectrosc. 1993. 47(9): 1329–1336. doi: 10.1366/0003702934067694.
  24. F.E. Barton, D.S. Himmersbach II, J.H. Duckworth, M.J. Smith. “Two-Dimensional Vibrational Spectroscopy: Correlation of Mid-and Near-Infrared Regions”. Appl. Spectrosc. 1992. 46(3): 420–429. doi: 10.1366/0003702924125375.
  25. M.A. Czarnecki, P. Wu, H.W. Siesler“2D FT-NIR and FT-IR Correlation Analysis of Temperature-Induced Changes of Nylon 12”. Chem. Phys. Lett. 1998. 283(5–6): 326–332. doi: 10.1016/S0009-2614(97)01397-3.
  26. Y.M. Jung, B. Czarnik-Matusewicz, Y. Ozaki. “Two-Dimensional Infrared, Two-Dimensional Raman, and Two-Dimensional Infrared and Raman Heterospectral Correlation Studies of Secondary Structure of β-Lactoglobulin in Buffer Solutions”. J. Phys. Chem. B. 2000. 104(32): 7812–7817. doi: 10.1021/jp0008041.
  27. V. Barone, M. Biczysko, J. Bloino, P. Cimino, et al. “CC/DFT Route toward Accurate Structures and Spectroscopic Features for Observed and Elusive Conformers of Flexible Molecules: Pyruvic Acid as a Case Study”. J. Chem. Theory Comput. 2015. 11(9): 4342−4363. doi: 10.1021/acs.jctc.5b00580.
  28. L. Paoloni, G. Mazzeo, G. Longhi, S. Abbate, et al. “Toward Fully Unsupervised Anharmonic Computations Complementing Experiment for Robust and Reliable Assignment and Interpretation of IR and VCD Spectra from Mid-IR to NIR: The Case of 2,3-Butanediol and trans-1,2-Cyclohexanediol”. J. Phys. Chem. A. 2020. 124(5): 1011−1024. doi: 10.1021/acs.jpca.9b11025.
  29. S. Singh, M.A. Czarnecki. “How Much Anharmonicity is in Vibrational Spectra of CH3I and CD3I?”. Spectrochim. Acta, Part A. 2021. 248: 119176. doi: 10.1016/j.saa.2020.119176.
  30. S. Singh, R. Szostak, M.A. Czarnecki. “Vibrational Intensities and Anharmonicity in MIR, NIR and Raman Spectra of Liquid CHCl3, CDCl3, CHBr3, and CDBr3: Spectroscopic and Theoretical Study”. J. Mol. Liq. 2021. 336: 116277. doi: 10.1016/j.molliq.2021.116277.
  31. K.B. Beć, J. Grabska, Y. Ozaki. “Advances in Anharmonic Methods and Their Applications in Vibrational Spectroscopies”. In: M.J. Wójcik, H. Nakatsuji, B. Kirtman, Y. Ozaki, editors. Frontiers of Quantum Chemistry. Singapore: Springer Nature, 2017. Chap. 20, Pp. 438–512. doi: 10.1007/978-981-10-5651-2_20.
  32. V. Barone, S. Alessandrini, M. Biczysko, J.R. Cheeseman, et al. “Computational Molecular Spectroscopy”. Nat. Rev. Methods Primers. 2021. 1: 38. doi: 10.1038/s43586-021-00034-1.
  33. R. Benassi, E. Ferrari, S. Lazzari, F. Spagnolo, et al. “Theoretical Study on Curcumin: A Comparison of Calculated Spectroscopic Properties with NMR, UV–Vis, and IR Experimental Data”. J. Mol. Struct. 2008. 892(1–3): 168–176. doi: 10.1016/j.molstruc.2008.05.024.
  34. C. Merten, J. Bloino, V. Barone, Y. Xu. “Anharmonicity Effects in the Vibrational CD Spectra of Propylene Oxide”. J. Phys. Chem. Lett. 2013. 4(20): 3424–3428. doi: 10.1021/jz401854y.
  35. C. Puzzarini, N. Tasinato, J. Bloino, L. Spada, et al. “State-of-the-Art Computation of the Rotational and IR Spectra of the Methyl–Cyclopropyl Cation: Hints on Its Detection in Space”. Phys. Chem. Chem. Phys. 2019. 21: 3431–3439. doi: 10.1039/C8CP04629H.
  36. M. Biczysko, J. Bloino, I. Carnimeo, P. Panek, et al. “Fully Ab Initio IR Spectra for Complex Molecular Systems from Perturbative Vibrational Approaches: Glycine as a Test Case”. J. Mol. Struct. 2021. 1009: 74–82. doi: 10.1016/j.molstruc.2011.10.012.
  37. J.M. Bowman, K. Christoffel, F. Tobin. “Application of SCF-SI Theory to Vibrational Motion in Polyatomic Molecules”. J. Phys. Chem. 1979. 83(8): 905–912. doi: 10.1021/j100471a005.
  38. D. Oschetzki, X. Zeng, H. Beckers, K. Banert, et al. “Azidoacetylene-Interpretation of Gas Phase Infrared Spectra Based on High-Level Vibrational Configuration Interaction Calculations”. Phys. Chem. Chem. Phys. 2013. 15: 6719–6725. doi: 10.1039/C3CP50268F.
  39. P. Seidler, O. Christiansen. “Vibrational Coupled Cluster Theory”. In: P. Cársky, J. Pladus, J. Pittner, editors. Recent Progress in Coupled Cluster Methods. New York: Springer Science + Business Media B.V., 2010. Chap. 18, Pp. 491–512. doi: 10.1007/978-90-481-2885-3_18.
  40. D. Madsen, O. Christiansen, C. König. “Anharmonic Vibrational Spectra from Double Incremental Potential Energy and Dipole Surfaces”. Phys. Chem. Chem. Phys. 2018. 20: 3445–3456. doi: 10.1039/C7CP07190F.
  41. M.J. Schuler, T.S. Hofer, C.W. Huck. “Assessing the Predictability of Anharmonic Vibrational Modes at the Example of Hydroxyl Groups: Ad Hoc Construction of Localised Modes and the Influence of Structural Solute–Solvent Motifs”. Phys. Chem. Chem. Phys. 2017. 19: 11990–12001. doi: 10.1039/C7CP01662J.
  42. U. Kuenzer, T.S. Hofer. “A Four-Dimensional Numerov Approach and Its Application to the Vibrational Eigenstates of Linear Triatomic Molecules: The Interplay Between Anharmonicity and Inter-Mode Coupling”. Chem. Phys. 2019. 520: 88–99. doi: 10.1016/j.chemphys.2019.01.007.
  43. J.M. Bowman. “Self Consistent Field Energies and Wavefunctions for Coupled Oscillators”. J. Chem. Phys. 1978. 68(2): 608. doi: 10.1063/1.435782.
  44. L.S. Norris, M.A. Ratner, A.E. Roitberg, R.B. Gerber. “Moller–Plesset Perturbation Theory Applied to Vibrational Problems”. J. Chem. Phys. 1996. 105(24): 1126. doi: 10.1063/1.472922.
  45. J.M. Bowman. “The Self-Consistent-Field Approach to Polyatomic Vibrations”. Acc. Chem. Res. 1986. 19(7): 202–208. doi: 10.1021/ar00127a002.
  46. R.B. Gerber, M.A. Ratner. “Self-Consistent-Field Methods for Vibrational Excitations in Polyatomic Systems”. In: R. Prigogine, S.A. Rice, editors. Advances in Chemical Physics: Evolution of Size Effects in Chemical Dynamics Part 1, Volume 70. New York: John Wiley and Sons, 2009. Chap. 4, Pp. 97–132. doi: 10.1002/9780470141199.ch4.
  47. T.K. Roy, R.B. Gerber. “Vibrational Self-Consistent Field Calculations for Spectroscopy of Biological Molecules: New Algorithmic Developments and Applications”. Phys. Chem. Chem. Phys. 2013. 15(24): 9468–9492. doi: 10.1039/C3CP50739D.
  48. T.K. Roy, R. Sharmacand, R.B. Gerber. “First-Principles Anharmonic Quantum Calculations for Peptide Spectroscopy: VSCF Calculations and Comparison with Experiments”. Phys. Chem. Chem. Phys. 2016. 18(3): 1607. doi: 10.1039/C5CP05979H.
  49. T. Okura. “Hardware of Near-Infrared Spectroscopy”. In: Y. Ozaki, C.W. Huck, S. Tsuchikawa, S.B. Engelsen, editors. Near-Infrared Spectroscopy: Theory, Spectral Analysis, Instrumentation, and Applications. Singapore: Springer Nature, 2021. Chap. 10, Pp. 235–264. doi: 10.1007/978-981-15-8648-4_10.
  50. R. Crocombe. “Portable Spectroscopy”. Appl. Spectrosc. 2018. 72(12): 1701–1751. doi: 10.1177/0003702818809719.
  51. K.B. Becć, J. Grabska, C.W. Huck. “Principles and Applications of Miniaturized Near-Infrared (NIR) Spectrometers”. Chem. Eur. J. 2021. 27(5): 1514–1532. doi: 10.1002/chem.202002838.
  52. S. Mayr, S. Strasser, C.G. Kirchler, F. Meischl, et al. “Quantification of Silymarin in Silybi mariani fructus: Challenging the Analytical Performance of Benchtop vs. Handheld NIR Spectrometers on Whole Seeds”. Planta Med. 2021. 87(6): 1–13. doi: 10.1055/a-1326-2497.
  53. S. Mayr, K.B. Beć, J. Grabska, E. Schneckenreiter, et al. “Near-Infrared Spectroscopy in Quality Control of Piper nigrum: A Comparison of Performance of Benchtop and Handheld Spectrometers”. Talanta. 2021. 223(Part 2): 121809. doi: 10.1016/j.talanta.2020.121809.
  54. S. Mayr, J. Schmelzer, C.G. Kirchler, C.K. Pezzei, et al. “Theae nigrae folium: Comparing the Analytical Performance of Benchtop and Handheld Near-Infrared Spectrometers”. Talanta. 2021. 221: 121165. doi: 10.1016/j.talanta.2020.121165.
  55. D. Pérez-Marín, M.-T. Sánchez, P. Paz, V. González-Dugo, et al. “Postharvest Shelf-Life Discrimination of Nectarines Produced Under Different Irrigation Strategies Using NIR-Spectroscopy”. LWT–Food Sci. Technol. 2011. 44(6): 1405–1414. doi: 10.1016/j.lwt.2011.01.008.
  56. B. de la Roza-Delgado, A. Garrido-Varo, A. Soldado, A. Gonzalez Arrojo, et al. “Matching Portable NIRS Instruments for In Situ Monitoring Indicators of Milk Composition”. Food Control. 2017. 76: 74–81. doi: 10.1016/j.foodcont.2017.01.004.
  57. N. Brown, D. Lichtblau, T. Fearn, M. Strlič. “Characterisation of 19th and 20th Century Chinese Paper”. Herit. Sci. 2017. 5: 47. doi: 10.1186/s40494-017-0158-x.
  58. Z. Luo, K.R. Thorp, H.A. Abdel-Haleem. “A High-Throughput Quantification of Resin and Rubber Contents in Parthenium Argentatum Using Near-Infrared (NIR) Spectroscopy”. Plant Methods. 2019. 15: 154. doi: 10.1186/s13007-019-0544-3.
  59. K. Srinivasan. “Black Pepper and its Pungent Principle-Piperine: A Review of Diverse Physiological Effects”. Crit. Rev. Food Sci. Nutr. 2007. 47(8): 735–748. doi: 10.1080/10408390601062054.
  60. N. Ahmad, H. Fazal, B.H. Abbasi, S. Farooq, et al. “Biological Role of Piper Nigrum L. (Black Pepper): A Review”. Asian Pac. J. Trop. Biomed. 2012. 2(3): S1945–S1953. doi: 10.1016/S2221-1691(12)60524-3.
  61. A. Tiwari, K.R. Mahadi, S.Y. Gabhe. “Piperine: A Comprehensive Review of Methods of Isolation, Purification, and Biological Properties”. Med. Drug Discovery. 2020. 7: 100027. doi: 10.1016/j.medidd.2020.100027.
  62. P. Nisha, R.S. Singhal, A.B. Pandit. “The Degradation Kinetics of Flavor in Black Pepper (Piper nigrum L.)”. J. Food Eng. 2009. 92(1): 44–49. doi: 10.1016/j.jfoodeng.2008.10.018.
  63. M. Svensson, S. Humbel, R.D.J. Froese, T. Matsubara, et al. “ONIOM: A Multilayered Integrated MO + MM Method for Geometry Optimizations and Single Point Energy Predictions A Test for Diels−Alder Reactions and Pt(P(t-Bu)3)2+ H2 Oxidative Addition”. J. Phys. Chem. 1996. 100(50): 19357–19363. doi: 10.1021/jp962071j.
  64. J. Bloino, M. Biczysko. “IR and Raman Spectroscopies Beyond the Harmonic Approximation: The Second-Order Vibrational Perturbation Theory Formulation”. In: J. Reedijk, editor. Reference Module in Chemistry, Molecular Sciences, and Chemical Engineering. Oxford: Elsevier, 2015. doi: 10.1016/B978-0-12-409547-2.10931-X.
  65. J. Bloino, A. Baiardi, M. Biczysko. “Aiming at an Accurate Prediction of Vibrational and Electronic Spectra for Medium-to-Large Molecules: An Overview”. Int. J. Quantum Chem. 2016. 116(21): 1543–1574. doi: 10.1002/qua.25188.
  66. J. Grabska, M.A. Czarnecki, K.B. Beć, Y. Ozaki. “Spectroscopic and Quantum Mechanical Calculation Study of the Effect of Isotopic Substitution on NIR Spectra of Methanol”. J. Phys. Chem. A. 2017. 121(41): 7925–7936. doi: 10.1021/acs.jpca.7b08693.
  67. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, et al. Gaussian 09, Revision E.01, Wallingford, Connecticut: Gaussian, Inc., 2009.
  68. J. Grabska, M. Ishigaki, K.B. Beć, M.J. Wójcik, Y. Ozaki. “Correlations Between Structure and Near-Infrared Spectra of Saturated and Unsaturated Carboxylic Acids. Insight from Anharmonic Density Functional Theory Calculations”. J. Phys. Chem. A. 2017. 121(18): 3437–3451. doi: 10.1021/acs.jpca.7b02053.
  69. M.S. Bradley. “Lineshapes in IR and Raman Spectroscopy: A Primer”. Spectroscopy. 2015. 30(11): 42–46.
  70. K.B. Beć, J. Grabska, C.G. Kirchler, C.W. Huck. “NIR Spectra Simulation of Thymol for Better Understanding of the Spectra Forming Factors, Phase and Concentration Effects, and PLS Regression Features”. J. Mol. Liq. 2018. 268: 895–902. doi: 10.1016/j.molliq.2018.08.011.
  71. J. Grabska, K.B. Beć, C.G. Kirchler, Y. Ozaki, et al. “Distinct Difference in Sensitivity of NIR vs. IR Bands of Melamine to Inter-Molecular Interactions with Impact on Analytical Spectroscopy Explained by Anharmonic Quantum Mechanical Study”. Molecules. 2019. 24(7): 1402. doi: 10.3390/molecules24071402.
  72. K.B. Beć, M.J. Wójcik, T. Nakajima. “Quantum Chemical Calculations of Basic Molecules: Alcohols and Carboxylic Acids”. NIR News. 2016. 27(8): 15–21. doi: 10.1255/nirn.1650.
  73. S.E. Glassford, B. Byrne, S.G. Kazarian. “Recent Applications of ATR FTIR Spectroscopy and Imaging to Proteins”. Biochim. Biophys. Acta Proteins Proteom. 2013. 1834(12): 2849–2858. doi: 10.1016/j.bbapap.2013.07.015.
  74. H. Ghimire, M. Venkataramani, Z. Bian, Y. Liu, et al. “ATR-FTIR Spectral Discrimination Between Normal and Tumorous Mouse Models of Lymphoma and Melanoma from Serum Samples”. Sci. Rep. 2017. 7: 16993. doi: 10.1038/s41598-017-17027-4.
  75. O.M. Kvalheim. “Interpretation of Partial Least Squares Regression Models by Means of Target Projection and Selectivity Ratio Plots”. J. Chemometrics. 2010. 24(7–8): 496–504. doi: 10.1002/cem.1289.

2021 (9)

D. Tjandra Nugraha, J.-L. Zinia Zaukuu, J.P. Aguinaga Bósquez, Z. Bodor, et al. “Near-Infrared Spectroscopy and Aquaphotomics for Monitoring Mung Bean (Vigna radiata) Sprout Growth and Validation of Ascorbic Acid Content”. Sensors. 2021. 21(2): 611. doi: 10.3390/s21020611.

K.B. Becć, J. Grabska, C.W. Huck. “Current and Future Research Directions in Computer-Aided Near-Infrared Spectroscopy: A Perspective”. Spectrochim. Acta, Part A. 2021. 254: 119625. doi: 10.1016/j.saa.2021.119625.

S. Singh, M.A. Czarnecki. “How Much Anharmonicity is in Vibrational Spectra of CH3I and CD3I?”. Spectrochim. Acta, Part A. 2021. 248: 119176. doi: 10.1016/j.saa.2020.119176.

S. Singh, R. Szostak, M.A. Czarnecki. “Vibrational Intensities and Anharmonicity in MIR, NIR and Raman Spectra of Liquid CHCl3, CDCl3, CHBr3, and CDBr3: Spectroscopic and Theoretical Study”. J. Mol. Liq. 2021. 336: 116277. doi: 10.1016/j.molliq.2021.116277.

V. Barone, S. Alessandrini, M. Biczysko, J.R. Cheeseman, et al. “Computational Molecular Spectroscopy”. Nat. Rev. Methods Primers. 2021. 1: 38. doi: 10.1038/s43586-021-00034-1.

M. Biczysko, J. Bloino, I. Carnimeo, P. Panek, et al. “Fully Ab Initio IR Spectra for Complex Molecular Systems from Perturbative Vibrational Approaches: Glycine as a Test Case”. J. Mol. Struct. 2021. 1009: 74–82. doi: 10.1016/j.molstruc.2011.10.012.

K.B. Becć, J. Grabska, C.W. Huck. “Principles and Applications of Miniaturized Near-Infrared (NIR) Spectrometers”. Chem. Eur. J. 2021. 27(5): 1514–1532. doi: 10.1002/chem.202002838.

S. Mayr, K.B. Beć, J. Grabska, E. Schneckenreiter, et al. “Near-Infrared Spectroscopy in Quality Control of Piper nigrum: A Comparison of Performance of Benchtop and Handheld Spectrometers”. Talanta. 2021. 223(Part 2): 121809. doi: 10.1016/j.talanta.2020.121809.

S. Mayr, J. Schmelzer, C.G. Kirchler, C.K. Pezzei, et al. “Theae nigrae folium: Comparing the Analytical Performance of Benchtop and Handheld Near-Infrared Spectrometers”. Talanta. 2021. 221: 121165. doi: 10.1016/j.talanta.2020.121165.

2020 (1)

L. Paoloni, G. Mazzeo, G. Longhi, S. Abbate, et al. “Toward Fully Unsupervised Anharmonic Computations Complementing Experiment for Robust and Reliable Assignment and Interpretation of IR and VCD Spectra from Mid-IR to NIR: The Case of 2,3-Butanediol and trans-1,2-Cyclohexanediol”. J. Phys. Chem. A. 2020. 124(5): 1011−1024. doi: 10.1021/acs.jpca.9b11025.

2019 (4)

K.B. Becć and C.W. Huck. “Breakthrough Potential in Near-Infrared Spectroscopy: Spectra Simulation. A Review of Recent Developments”. Front. Chem. 2019. 7: 48doi: 10.3389/fchem.2019.00048.

U. Kuenzer, T.S. Hofer. “A Four-Dimensional Numerov Approach and Its Application to the Vibrational Eigenstates of Linear Triatomic Molecules: The Interplay Between Anharmonicity and Inter-Mode Coupling”. Chem. Phys. 2019. 520: 88–99. doi: 10.1016/j.chemphys.2019.01.007.

Z. Luo, K.R. Thorp, H.A. Abdel-Haleem. “A High-Throughput Quantification of Resin and Rubber Contents in Parthenium Argentatum Using Near-Infrared (NIR) Spectroscopy”. Plant Methods. 2019. 15: 154. doi: 10.1186/s13007-019-0544-3.

J. Grabska, K.B. Beć, C.G. Kirchler, Y. Ozaki, et al. “Distinct Difference in Sensitivity of NIR vs. IR Bands of Melamine to Inter-Molecular Interactions with Impact on Analytical Spectroscopy Explained by Anharmonic Quantum Mechanical Study”. Molecules. 2019. 24(7): 1402. doi: 10.3390/molecules24071402.

2018 (3)

K.B. Beć, J. Grabska, C.G. Kirchler, C.W. Huck. “NIR Spectra Simulation of Thymol for Better Understanding of the Spectra Forming Factors, Phase and Concentration Effects, and PLS Regression Features”. J. Mol. Liq. 2018. 268: 895–902. doi: 10.1016/j.molliq.2018.08.011.

D. Madsen, O. Christiansen, C. König. “Anharmonic Vibrational Spectra from Double Incremental Potential Energy and Dipole Surfaces”. Phys. Chem. Chem. Phys. 2018. 20: 3445–3456. doi: 10.1039/C7CP07190F.

R. Crocombe. “Portable Spectroscopy”. Appl. Spectrosc. 2018. 72(12): 1701–1751. doi: 10.1177/0003702818809719.

2017 (6)

M.J. Schuler, T.S. Hofer, C.W. Huck. “Assessing the Predictability of Anharmonic Vibrational Modes at the Example of Hydroxyl Groups: Ad Hoc Construction of Localised Modes and the Influence of Structural Solute–Solvent Motifs”. Phys. Chem. Chem. Phys. 2017. 19: 11990–12001. doi: 10.1039/C7CP01662J.

H. Ghimire, M. Venkataramani, Z. Bian, Y. Liu, et al. “ATR-FTIR Spectral Discrimination Between Normal and Tumorous Mouse Models of Lymphoma and Melanoma from Serum Samples”. Sci. Rep. 2017. 7: 16993. doi: 10.1038/s41598-017-17027-4.

B. de la Roza-Delgado, A. Garrido-Varo, A. Soldado, A. Gonzalez Arrojo, et al. “Matching Portable NIRS Instruments for In Situ Monitoring Indicators of Milk Composition”. Food Control. 2017. 76: 74–81. doi: 10.1016/j.foodcont.2017.01.004.

N. Brown, D. Lichtblau, T. Fearn, M. Strlič. “Characterisation of 19th and 20th Century Chinese Paper”. Herit. Sci. 2017. 5: 47. doi: 10.1186/s40494-017-0158-x.

J. Grabska, M.A. Czarnecki, K.B. Beć, Y. Ozaki. “Spectroscopic and Quantum Mechanical Calculation Study of the Effect of Isotopic Substitution on NIR Spectra of Methanol”. J. Phys. Chem. A. 2017. 121(41): 7925–7936. doi: 10.1021/acs.jpca.7b08693.

J. Grabska, M. Ishigaki, K.B. Beć, M.J. Wójcik, Y. Ozaki. “Correlations Between Structure and Near-Infrared Spectra of Saturated and Unsaturated Carboxylic Acids. Insight from Anharmonic Density Functional Theory Calculations”. J. Phys. Chem. A. 2017. 121(18): 3437–3451. doi: 10.1021/acs.jpca.7b02053.

2016 (3)

J. Bloino, A. Baiardi, M. Biczysko. “Aiming at an Accurate Prediction of Vibrational and Electronic Spectra for Medium-to-Large Molecules: An Overview”. Int. J. Quantum Chem. 2016. 116(21): 1543–1574. doi: 10.1002/qua.25188.

K.B. Beć, M.J. Wójcik, T. Nakajima. “Quantum Chemical Calculations of Basic Molecules: Alcohols and Carboxylic Acids”. NIR News. 2016. 27(8): 15–21. doi: 10.1255/nirn.1650.

T.K. Roy, R. Sharmacand, R.B. Gerber. “First-Principles Anharmonic Quantum Calculations for Peptide Spectroscopy: VSCF Calculations and Comparison with Experiments”. Phys. Chem. Chem. Phys. 2016. 18(3): 1607. doi: 10.1039/C5CP05979H.

2015 (2)

M.A. Czarnecki, Y. Morisawa, Y. Futami, Y. Ozaki. “Advances in Molecular Structure and Interaction Studies Using Near-Infrared Spectroscopy”. Chem. Rev. 2015. 115(18): 9707–9744. doi: 10.1021/cr500013u.

M.S. Bradley. “Lineshapes in IR and Raman Spectroscopy: A Primer”. Spectroscopy. 2015. 30(11): 42–46.

2014 (1)

O.M.D. Lutz, G.K. Bonn, B.M. Rode, C.W. Huck. “Reproducible Quantification of Ethanol in Gasoline via a Customized Mobile Near-Infrared Spectrometer”. Anal. Chim. Acta. 2014. 826: 61–68. doi: 10.1016/j.aca.2014.04.002.

2013 (4)

C. Merten, J. Bloino, V. Barone, Y. Xu. “Anharmonicity Effects in the Vibrational CD Spectra of Propylene Oxide”. J. Phys. Chem. Lett. 2013. 4(20): 3424–3428. doi: 10.1021/jz401854y.

D. Oschetzki, X. Zeng, H. Beckers, K. Banert, et al. “Azidoacetylene-Interpretation of Gas Phase Infrared Spectra Based on High-Level Vibrational Configuration Interaction Calculations”. Phys. Chem. Chem. Phys. 2013. 15: 6719–6725. doi: 10.1039/C3CP50268F.

T.K. Roy, R.B. Gerber. “Vibrational Self-Consistent Field Calculations for Spectroscopy of Biological Molecules: New Algorithmic Developments and Applications”. Phys. Chem. Chem. Phys. 2013. 15(24): 9468–9492. doi: 10.1039/C3CP50739D.

S.E. Glassford, B. Byrne, S.G. Kazarian. “Recent Applications of ATR FTIR Spectroscopy and Imaging to Proteins”. Biochim. Biophys. Acta Proteins Proteom. 2013. 1834(12): 2849–2858. doi: 10.1016/j.bbapap.2013.07.015.

2011 (1)

D. Pérez-Marín, M.-T. Sánchez, P. Paz, V. González-Dugo, et al. “Postharvest Shelf-Life Discrimination of Nectarines Produced Under Different Irrigation Strategies Using NIR-Spectroscopy”. LWT–Food Sci. Technol. 2011. 44(6): 1405–1414. doi: 10.1016/j.lwt.2011.01.008.

2010 (1)

O.M. Kvalheim. “Interpretation of Partial Least Squares Regression Models by Means of Target Projection and Selectivity Ratio Plots”. J. Chemometrics. 2010. 24(7–8): 496–504. doi: 10.1002/cem.1289.

2009 (2)

P. Nisha, R.S. Singhal, A.B. Pandit. “The Degradation Kinetics of Flavor in Black Pepper (Piper nigrum L.)”. J. Food Eng. 2009. 92(1): 44–49. doi: 10.1016/j.jfoodeng.2008.10.018.

R. Iwamoto. “Near-Infrared Spectroscopy as a Useful Tool for Analysis in Solution in Common Organic Solvents”. Appl. Spectrosc. 2009. 63(3): 354−362. doi: 10.1366/000370209787598942.

2008 (1)

R. Benassi, E. Ferrari, S. Lazzari, F. Spagnolo, et al. “Theoretical Study on Curcumin: A Comparison of Calculated Spectroscopic Properties with NMR, UV–Vis, and IR Experimental Data”. J. Mol. Struct. 2008. 892(1–3): 168–176. doi: 10.1016/j.molstruc.2008.05.024.

2007 (1)

K. Srinivasan. “Black Pepper and its Pungent Principle-Piperine: A Review of Diverse Physiological Effects”. Crit. Rev. Food Sci. Nutr. 2007. 47(8): 735–748. doi: 10.1080/10408390601062054.

2000 (1)

Y.M. Jung, B. Czarnik-Matusewicz, Y. Ozaki. “Two-Dimensional Infrared, Two-Dimensional Raman, and Two-Dimensional Infrared and Raman Heterospectral Correlation Studies of Secondary Structure of β-Lactoglobulin in Buffer Solutions”. J. Phys. Chem. B. 2000. 104(32): 7812–7817. doi: 10.1021/jp0008041.

1998 (1)

M.A. Czarnecki, P. Wu, H.W. Siesler“2D FT-NIR and FT-IR Correlation Analysis of Temperature-Induced Changes of Nylon 12”. Chem. Phys. Lett. 1998. 283(5–6): 326–332. doi: 10.1016/S0009-2614(97)01397-3.

1996 (2)

L.S. Norris, M.A. Ratner, A.E. Roitberg, R.B. Gerber. “Moller–Plesset Perturbation Theory Applied to Vibrational Problems”. J. Chem. Phys. 1996. 105(24): 1126. doi: 10.1063/1.472922.

M. Svensson, S. Humbel, R.D.J. Froese, T. Matsubara, et al. “ONIOM: A Multilayered Integrated MO + MM Method for Geometry Optimizations and Single Point Energy Predictions A Test for Diels−Alder Reactions and Pt(P(t-Bu)3)2+ H2 Oxidative Addition”. J. Phys. Chem. 1996. 100(50): 19357–19363. doi: 10.1021/jp962071j.

1993 (1)

I. Noda. “Generalized Two-Dimensional Correlation Method Applicable to Infrared, Raman, and Other Types of Spectroscopy”. Appl. Spectrosc. 1993. 47(9): 1329–1336. doi: 10.1366/0003702934067694.

1992 (1)

F.E. Barton, D.S. Himmersbach II, J.H. Duckworth, M.J. Smith. “Two-Dimensional Vibrational Spectroscopy: Correlation of Mid-and Near-Infrared Regions”. Appl. Spectrosc. 1992. 46(3): 420–429. doi: 10.1366/0003702924125375.

1986 (1)

J.M. Bowman. “The Self-Consistent-Field Approach to Polyatomic Vibrations”. Acc. Chem. Res. 1986. 19(7): 202–208. doi: 10.1021/ar00127a002.

1979 (1)

J.M. Bowman, K. Christoffel, F. Tobin. “Application of SCF-SI Theory to Vibrational Motion in Polyatomic Molecules”. J. Phys. Chem. 1979. 83(8): 905–912. doi: 10.1021/j100471a005.

1978 (1)

J.M. Bowman. “Self Consistent Field Energies and Wavefunctions for Coupled Oscillators”. J. Chem. Phys. 1978. 68(2): 608. doi: 10.1063/1.435782.

Abbate, S.

L. Paoloni, G. Mazzeo, G. Longhi, S. Abbate, et al. “Toward Fully Unsupervised Anharmonic Computations Complementing Experiment for Robust and Reliable Assignment and Interpretation of IR and VCD Spectra from Mid-IR to NIR: The Case of 2,3-Butanediol and trans-1,2-Cyclohexanediol”. J. Phys. Chem. A. 2020. 124(5): 1011−1024. doi: 10.1021/acs.jpca.9b11025.

Abdel-Haleem, H.A.

Z. Luo, K.R. Thorp, H.A. Abdel-Haleem. “A High-Throughput Quantification of Resin and Rubber Contents in Parthenium Argentatum Using Near-Infrared (NIR) Spectroscopy”. Plant Methods. 2019. 15: 154. doi: 10.1186/s13007-019-0544-3.

Aguinaga Bósquez, J.P.

D. Tjandra Nugraha, J.-L. Zinia Zaukuu, J.P. Aguinaga Bósquez, Z. Bodor, et al. “Near-Infrared Spectroscopy and Aquaphotomics for Monitoring Mung Bean (Vigna radiata) Sprout Growth and Validation of Ascorbic Acid Content”. Sensors. 2021. 21(2): 611. doi: 10.3390/s21020611.

Alessandrini, S.

V. Barone, S. Alessandrini, M. Biczysko, J.R. Cheeseman, et al. “Computational Molecular Spectroscopy”. Nat. Rev. Methods Primers. 2021. 1: 38. doi: 10.1038/s43586-021-00034-1.

Baiardi, A.

J. Bloino, A. Baiardi, M. Biczysko. “Aiming at an Accurate Prediction of Vibrational and Electronic Spectra for Medium-to-Large Molecules: An Overview”. Int. J. Quantum Chem. 2016. 116(21): 1543–1574. doi: 10.1002/qua.25188.

Banert, K.

D. Oschetzki, X. Zeng, H. Beckers, K. Banert, et al. “Azidoacetylene-Interpretation of Gas Phase Infrared Spectra Based on High-Level Vibrational Configuration Interaction Calculations”. Phys. Chem. Chem. Phys. 2013. 15: 6719–6725. doi: 10.1039/C3CP50268F.

Barone, V.

V. Barone, S. Alessandrini, M. Biczysko, J.R. Cheeseman, et al. “Computational Molecular Spectroscopy”. Nat. Rev. Methods Primers. 2021. 1: 38. doi: 10.1038/s43586-021-00034-1.

C. Merten, J. Bloino, V. Barone, Y. Xu. “Anharmonicity Effects in the Vibrational CD Spectra of Propylene Oxide”. J. Phys. Chem. Lett. 2013. 4(20): 3424–3428. doi: 10.1021/jz401854y.

Barton, F.E.

F.E. Barton, D.S. Himmersbach II, J.H. Duckworth, M.J. Smith. “Two-Dimensional Vibrational Spectroscopy: Correlation of Mid-and Near-Infrared Regions”. Appl. Spectrosc. 1992. 46(3): 420–429. doi: 10.1366/0003702924125375.

Bec, K.B.

S. Mayr, K.B. Beć, J. Grabska, E. Schneckenreiter, et al. “Near-Infrared Spectroscopy in Quality Control of Piper nigrum: A Comparison of Performance of Benchtop and Handheld Spectrometers”. Talanta. 2021. 223(Part 2): 121809. doi: 10.1016/j.talanta.2020.121809.

J. Grabska, K.B. Beć, C.G. Kirchler, Y. Ozaki, et al. “Distinct Difference in Sensitivity of NIR vs. IR Bands of Melamine to Inter-Molecular Interactions with Impact on Analytical Spectroscopy Explained by Anharmonic Quantum Mechanical Study”. Molecules. 2019. 24(7): 1402. doi: 10.3390/molecules24071402.

K.B. Beć, J. Grabska, C.G. Kirchler, C.W. Huck. “NIR Spectra Simulation of Thymol for Better Understanding of the Spectra Forming Factors, Phase and Concentration Effects, and PLS Regression Features”. J. Mol. Liq. 2018. 268: 895–902. doi: 10.1016/j.molliq.2018.08.011.

J. Grabska, M. Ishigaki, K.B. Beć, M.J. Wójcik, Y. Ozaki. “Correlations Between Structure and Near-Infrared Spectra of Saturated and Unsaturated Carboxylic Acids. Insight from Anharmonic Density Functional Theory Calculations”. J. Phys. Chem. A. 2017. 121(18): 3437–3451. doi: 10.1021/acs.jpca.7b02053.

J. Grabska, M.A. Czarnecki, K.B. Beć, Y. Ozaki. “Spectroscopic and Quantum Mechanical Calculation Study of the Effect of Isotopic Substitution on NIR Spectra of Methanol”. J. Phys. Chem. A. 2017. 121(41): 7925–7936. doi: 10.1021/acs.jpca.7b08693.

K.B. Beć, M.J. Wójcik, T. Nakajima. “Quantum Chemical Calculations of Basic Molecules: Alcohols and Carboxylic Acids”. NIR News. 2016. 27(8): 15–21. doi: 10.1255/nirn.1650.

Becc, K.B.

K.B. Becć, J. Grabska, C.W. Huck. “Principles and Applications of Miniaturized Near-Infrared (NIR) Spectrometers”. Chem. Eur. J. 2021. 27(5): 1514–1532. doi: 10.1002/chem.202002838.

K.B. Becć, J. Grabska, C.W. Huck. “Current and Future Research Directions in Computer-Aided Near-Infrared Spectroscopy: A Perspective”. Spectrochim. Acta, Part A. 2021. 254: 119625. doi: 10.1016/j.saa.2021.119625.

K.B. Becć and C.W. Huck. “Breakthrough Potential in Near-Infrared Spectroscopy: Spectra Simulation. A Review of Recent Developments”. Front. Chem. 2019. 7: 48doi: 10.3389/fchem.2019.00048.

Beckers, H.

D. Oschetzki, X. Zeng, H. Beckers, K. Banert, et al. “Azidoacetylene-Interpretation of Gas Phase Infrared Spectra Based on High-Level Vibrational Configuration Interaction Calculations”. Phys. Chem. Chem. Phys. 2013. 15: 6719–6725. doi: 10.1039/C3CP50268F.

Benassi, R.

R. Benassi, E. Ferrari, S. Lazzari, F. Spagnolo, et al. “Theoretical Study on Curcumin: A Comparison of Calculated Spectroscopic Properties with NMR, UV–Vis, and IR Experimental Data”. J. Mol. Struct. 2008. 892(1–3): 168–176. doi: 10.1016/j.molstruc.2008.05.024.

Bian, Z.

H. Ghimire, M. Venkataramani, Z. Bian, Y. Liu, et al. “ATR-FTIR Spectral Discrimination Between Normal and Tumorous Mouse Models of Lymphoma and Melanoma from Serum Samples”. Sci. Rep. 2017. 7: 16993. doi: 10.1038/s41598-017-17027-4.

Biczysko, M.

V. Barone, S. Alessandrini, M. Biczysko, J.R. Cheeseman, et al. “Computational Molecular Spectroscopy”. Nat. Rev. Methods Primers. 2021. 1: 38. doi: 10.1038/s43586-021-00034-1.

M. Biczysko, J. Bloino, I. Carnimeo, P. Panek, et al. “Fully Ab Initio IR Spectra for Complex Molecular Systems from Perturbative Vibrational Approaches: Glycine as a Test Case”. J. Mol. Struct. 2021. 1009: 74–82. doi: 10.1016/j.molstruc.2011.10.012.

J. Bloino, A. Baiardi, M. Biczysko. “Aiming at an Accurate Prediction of Vibrational and Electronic Spectra for Medium-to-Large Molecules: An Overview”. Int. J. Quantum Chem. 2016. 116(21): 1543–1574. doi: 10.1002/qua.25188.

Bloino, J.

M. Biczysko, J. Bloino, I. Carnimeo, P. Panek, et al. “Fully Ab Initio IR Spectra for Complex Molecular Systems from Perturbative Vibrational Approaches: Glycine as a Test Case”. J. Mol. Struct. 2021. 1009: 74–82. doi: 10.1016/j.molstruc.2011.10.012.

J. Bloino, A. Baiardi, M. Biczysko. “Aiming at an Accurate Prediction of Vibrational and Electronic Spectra for Medium-to-Large Molecules: An Overview”. Int. J. Quantum Chem. 2016. 116(21): 1543–1574. doi: 10.1002/qua.25188.

C. Merten, J. Bloino, V. Barone, Y. Xu. “Anharmonicity Effects in the Vibrational CD Spectra of Propylene Oxide”. J. Phys. Chem. Lett. 2013. 4(20): 3424–3428. doi: 10.1021/jz401854y.

Bodor, Z.

D. Tjandra Nugraha, J.-L. Zinia Zaukuu, J.P. Aguinaga Bósquez, Z. Bodor, et al. “Near-Infrared Spectroscopy and Aquaphotomics for Monitoring Mung Bean (Vigna radiata) Sprout Growth and Validation of Ascorbic Acid Content”. Sensors. 2021. 21(2): 611. doi: 10.3390/s21020611.

Bonn, G.K.

O.M.D. Lutz, G.K. Bonn, B.M. Rode, C.W. Huck. “Reproducible Quantification of Ethanol in Gasoline via a Customized Mobile Near-Infrared Spectrometer”. Anal. Chim. Acta. 2014. 826: 61–68. doi: 10.1016/j.aca.2014.04.002.

Bowman, J.M.

J.M. Bowman. “The Self-Consistent-Field Approach to Polyatomic Vibrations”. Acc. Chem. Res. 1986. 19(7): 202–208. doi: 10.1021/ar00127a002.

J.M. Bowman, K. Christoffel, F. Tobin. “Application of SCF-SI Theory to Vibrational Motion in Polyatomic Molecules”. J. Phys. Chem. 1979. 83(8): 905–912. doi: 10.1021/j100471a005.

J.M. Bowman. “Self Consistent Field Energies and Wavefunctions for Coupled Oscillators”. J. Chem. Phys. 1978. 68(2): 608. doi: 10.1063/1.435782.

Bradley, M.S.

M.S. Bradley. “Lineshapes in IR and Raman Spectroscopy: A Primer”. Spectroscopy. 2015. 30(11): 42–46.

Brown, N.

N. Brown, D. Lichtblau, T. Fearn, M. Strlič. “Characterisation of 19th and 20th Century Chinese Paper”. Herit. Sci. 2017. 5: 47. doi: 10.1186/s40494-017-0158-x.

Byrne, B.

S.E. Glassford, B. Byrne, S.G. Kazarian. “Recent Applications of ATR FTIR Spectroscopy and Imaging to Proteins”. Biochim. Biophys. Acta Proteins Proteom. 2013. 1834(12): 2849–2858. doi: 10.1016/j.bbapap.2013.07.015.

Carnimeo, I.

M. Biczysko, J. Bloino, I. Carnimeo, P. Panek, et al. “Fully Ab Initio IR Spectra for Complex Molecular Systems from Perturbative Vibrational Approaches: Glycine as a Test Case”. J. Mol. Struct. 2021. 1009: 74–82. doi: 10.1016/j.molstruc.2011.10.012.

Cheeseman, J.R.

V. Barone, S. Alessandrini, M. Biczysko, J.R. Cheeseman, et al. “Computational Molecular Spectroscopy”. Nat. Rev. Methods Primers. 2021. 1: 38. doi: 10.1038/s43586-021-00034-1.

Christiansen, O.

D. Madsen, O. Christiansen, C. König. “Anharmonic Vibrational Spectra from Double Incremental Potential Energy and Dipole Surfaces”. Phys. Chem. Chem. Phys. 2018. 20: 3445–3456. doi: 10.1039/C7CP07190F.

Christoffel, K.

J.M. Bowman, K. Christoffel, F. Tobin. “Application of SCF-SI Theory to Vibrational Motion in Polyatomic Molecules”. J. Phys. Chem. 1979. 83(8): 905–912. doi: 10.1021/j100471a005.

Crocombe, R.

R. Crocombe. “Portable Spectroscopy”. Appl. Spectrosc. 2018. 72(12): 1701–1751. doi: 10.1177/0003702818809719.

Czarnecki, M.A.

S. Singh, R. Szostak, M.A. Czarnecki. “Vibrational Intensities and Anharmonicity in MIR, NIR and Raman Spectra of Liquid CHCl3, CDCl3, CHBr3, and CDBr3: Spectroscopic and Theoretical Study”. J. Mol. Liq. 2021. 336: 116277. doi: 10.1016/j.molliq.2021.116277.

S. Singh, M.A. Czarnecki. “How Much Anharmonicity is in Vibrational Spectra of CH3I and CD3I?”. Spectrochim. Acta, Part A. 2021. 248: 119176. doi: 10.1016/j.saa.2020.119176.

J. Grabska, M.A. Czarnecki, K.B. Beć, Y. Ozaki. “Spectroscopic and Quantum Mechanical Calculation Study of the Effect of Isotopic Substitution on NIR Spectra of Methanol”. J. Phys. Chem. A. 2017. 121(41): 7925–7936. doi: 10.1021/acs.jpca.7b08693.

M.A. Czarnecki, Y. Morisawa, Y. Futami, Y. Ozaki. “Advances in Molecular Structure and Interaction Studies Using Near-Infrared Spectroscopy”. Chem. Rev. 2015. 115(18): 9707–9744. doi: 10.1021/cr500013u.

M.A. Czarnecki, P. Wu, H.W. Siesler“2D FT-NIR and FT-IR Correlation Analysis of Temperature-Induced Changes of Nylon 12”. Chem. Phys. Lett. 1998. 283(5–6): 326–332. doi: 10.1016/S0009-2614(97)01397-3.

Czarnik-Matusewicz, B.

Y.M. Jung, B. Czarnik-Matusewicz, Y. Ozaki. “Two-Dimensional Infrared, Two-Dimensional Raman, and Two-Dimensional Infrared and Raman Heterospectral Correlation Studies of Secondary Structure of β-Lactoglobulin in Buffer Solutions”. J. Phys. Chem. B. 2000. 104(32): 7812–7817. doi: 10.1021/jp0008041.

de la Roza-Delgado, B.

B. de la Roza-Delgado, A. Garrido-Varo, A. Soldado, A. Gonzalez Arrojo, et al. “Matching Portable NIRS Instruments for In Situ Monitoring Indicators of Milk Composition”. Food Control. 2017. 76: 74–81. doi: 10.1016/j.foodcont.2017.01.004.

Duckworth, J.H.

F.E. Barton, D.S. Himmersbach II, J.H. Duckworth, M.J. Smith. “Two-Dimensional Vibrational Spectroscopy: Correlation of Mid-and Near-Infrared Regions”. Appl. Spectrosc. 1992. 46(3): 420–429. doi: 10.1366/0003702924125375.

Fearn, T.

N. Brown, D. Lichtblau, T. Fearn, M. Strlič. “Characterisation of 19th and 20th Century Chinese Paper”. Herit. Sci. 2017. 5: 47. doi: 10.1186/s40494-017-0158-x.

Ferrari, E.

R. Benassi, E. Ferrari, S. Lazzari, F. Spagnolo, et al. “Theoretical Study on Curcumin: A Comparison of Calculated Spectroscopic Properties with NMR, UV–Vis, and IR Experimental Data”. J. Mol. Struct. 2008. 892(1–3): 168–176. doi: 10.1016/j.molstruc.2008.05.024.

Froese, R.D.J.

M. Svensson, S. Humbel, R.D.J. Froese, T. Matsubara, et al. “ONIOM: A Multilayered Integrated MO + MM Method for Geometry Optimizations and Single Point Energy Predictions A Test for Diels−Alder Reactions and Pt(P(t-Bu)3)2+ H2 Oxidative Addition”. J. Phys. Chem. 1996. 100(50): 19357–19363. doi: 10.1021/jp962071j.

Futami, Y.

M.A. Czarnecki, Y. Morisawa, Y. Futami, Y. Ozaki. “Advances in Molecular Structure and Interaction Studies Using Near-Infrared Spectroscopy”. Chem. Rev. 2015. 115(18): 9707–9744. doi: 10.1021/cr500013u.

Garrido-Varo, A.

B. de la Roza-Delgado, A. Garrido-Varo, A. Soldado, A. Gonzalez Arrojo, et al. “Matching Portable NIRS Instruments for In Situ Monitoring Indicators of Milk Composition”. Food Control. 2017. 76: 74–81. doi: 10.1016/j.foodcont.2017.01.004.

Gerber, R.B.

T.K. Roy, R. Sharmacand, R.B. Gerber. “First-Principles Anharmonic Quantum Calculations for Peptide Spectroscopy: VSCF Calculations and Comparison with Experiments”. Phys. Chem. Chem. Phys. 2016. 18(3): 1607. doi: 10.1039/C5CP05979H.

T.K. Roy, R.B. Gerber. “Vibrational Self-Consistent Field Calculations for Spectroscopy of Biological Molecules: New Algorithmic Developments and Applications”. Phys. Chem. Chem. Phys. 2013. 15(24): 9468–9492. doi: 10.1039/C3CP50739D.

L.S. Norris, M.A. Ratner, A.E. Roitberg, R.B. Gerber. “Moller–Plesset Perturbation Theory Applied to Vibrational Problems”. J. Chem. Phys. 1996. 105(24): 1126. doi: 10.1063/1.472922.

Ghimire, H.

H. Ghimire, M. Venkataramani, Z. Bian, Y. Liu, et al. “ATR-FTIR Spectral Discrimination Between Normal and Tumorous Mouse Models of Lymphoma and Melanoma from Serum Samples”. Sci. Rep. 2017. 7: 16993. doi: 10.1038/s41598-017-17027-4.

Glassford, S.E.

S.E. Glassford, B. Byrne, S.G. Kazarian. “Recent Applications of ATR FTIR Spectroscopy and Imaging to Proteins”. Biochim. Biophys. Acta Proteins Proteom. 2013. 1834(12): 2849–2858. doi: 10.1016/j.bbapap.2013.07.015.

Gonzalez Arrojo, A.

B. de la Roza-Delgado, A. Garrido-Varo, A. Soldado, A. Gonzalez Arrojo, et al. “Matching Portable NIRS Instruments for In Situ Monitoring Indicators of Milk Composition”. Food Control. 2017. 76: 74–81. doi: 10.1016/j.foodcont.2017.01.004.

González-Dugo, V.

D. Pérez-Marín, M.-T. Sánchez, P. Paz, V. González-Dugo, et al. “Postharvest Shelf-Life Discrimination of Nectarines Produced Under Different Irrigation Strategies Using NIR-Spectroscopy”. LWT–Food Sci. Technol. 2011. 44(6): 1405–1414. doi: 10.1016/j.lwt.2011.01.008.

Grabska, J.

K.B. Becć, J. Grabska, C.W. Huck. “Principles and Applications of Miniaturized Near-Infrared (NIR) Spectrometers”. Chem. Eur. J. 2021. 27(5): 1514–1532. doi: 10.1002/chem.202002838.

S. Mayr, K.B. Beć, J. Grabska, E. Schneckenreiter, et al. “Near-Infrared Spectroscopy in Quality Control of Piper nigrum: A Comparison of Performance of Benchtop and Handheld Spectrometers”. Talanta. 2021. 223(Part 2): 121809. doi: 10.1016/j.talanta.2020.121809.

K.B. Becć, J. Grabska, C.W. Huck. “Current and Future Research Directions in Computer-Aided Near-Infrared Spectroscopy: A Perspective”. Spectrochim. Acta, Part A. 2021. 254: 119625. doi: 10.1016/j.saa.2021.119625.

J. Grabska, K.B. Beć, C.G. Kirchler, Y. Ozaki, et al. “Distinct Difference in Sensitivity of NIR vs. IR Bands of Melamine to Inter-Molecular Interactions with Impact on Analytical Spectroscopy Explained by Anharmonic Quantum Mechanical Study”. Molecules. 2019. 24(7): 1402. doi: 10.3390/molecules24071402.

K.B. Beć, J. Grabska, C.G. Kirchler, C.W. Huck. “NIR Spectra Simulation of Thymol for Better Understanding of the Spectra Forming Factors, Phase and Concentration Effects, and PLS Regression Features”. J. Mol. Liq. 2018. 268: 895–902. doi: 10.1016/j.molliq.2018.08.011.

J. Grabska, M.A. Czarnecki, K.B. Beć, Y. Ozaki. “Spectroscopic and Quantum Mechanical Calculation Study of the Effect of Isotopic Substitution on NIR Spectra of Methanol”. J. Phys. Chem. A. 2017. 121(41): 7925–7936. doi: 10.1021/acs.jpca.7b08693.

J. Grabska, M. Ishigaki, K.B. Beć, M.J. Wójcik, Y. Ozaki. “Correlations Between Structure and Near-Infrared Spectra of Saturated and Unsaturated Carboxylic Acids. Insight from Anharmonic Density Functional Theory Calculations”. J. Phys. Chem. A. 2017. 121(18): 3437–3451. doi: 10.1021/acs.jpca.7b02053.

Himmersbach II, D.S.

F.E. Barton, D.S. Himmersbach II, J.H. Duckworth, M.J. Smith. “Two-Dimensional Vibrational Spectroscopy: Correlation of Mid-and Near-Infrared Regions”. Appl. Spectrosc. 1992. 46(3): 420–429. doi: 10.1366/0003702924125375.

Hofer, T.S.

U. Kuenzer, T.S. Hofer. “A Four-Dimensional Numerov Approach and Its Application to the Vibrational Eigenstates of Linear Triatomic Molecules: The Interplay Between Anharmonicity and Inter-Mode Coupling”. Chem. Phys. 2019. 520: 88–99. doi: 10.1016/j.chemphys.2019.01.007.

M.J. Schuler, T.S. Hofer, C.W. Huck. “Assessing the Predictability of Anharmonic Vibrational Modes at the Example of Hydroxyl Groups: Ad Hoc Construction of Localised Modes and the Influence of Structural Solute–Solvent Motifs”. Phys. Chem. Chem. Phys. 2017. 19: 11990–12001. doi: 10.1039/C7CP01662J.

Huck, C.W.

K.B. Becć, J. Grabska, C.W. Huck. “Current and Future Research Directions in Computer-Aided Near-Infrared Spectroscopy: A Perspective”. Spectrochim. Acta, Part A. 2021. 254: 119625. doi: 10.1016/j.saa.2021.119625.

K.B. Becć, J. Grabska, C.W. Huck. “Principles and Applications of Miniaturized Near-Infrared (NIR) Spectrometers”. Chem. Eur. J. 2021. 27(5): 1514–1532. doi: 10.1002/chem.202002838.

K.B. Becć and C.W. Huck. “Breakthrough Potential in Near-Infrared Spectroscopy: Spectra Simulation. A Review of Recent Developments”. Front. Chem. 2019. 7: 48doi: 10.3389/fchem.2019.00048.

K.B. Beć, J. Grabska, C.G. Kirchler, C.W. Huck. “NIR Spectra Simulation of Thymol for Better Understanding of the Spectra Forming Factors, Phase and Concentration Effects, and PLS Regression Features”. J. Mol. Liq. 2018. 268: 895–902. doi: 10.1016/j.molliq.2018.08.011.

M.J. Schuler, T.S. Hofer, C.W. Huck. “Assessing the Predictability of Anharmonic Vibrational Modes at the Example of Hydroxyl Groups: Ad Hoc Construction of Localised Modes and the Influence of Structural Solute–Solvent Motifs”. Phys. Chem. Chem. Phys. 2017. 19: 11990–12001. doi: 10.1039/C7CP01662J.

O.M.D. Lutz, G.K. Bonn, B.M. Rode, C.W. Huck. “Reproducible Quantification of Ethanol in Gasoline via a Customized Mobile Near-Infrared Spectrometer”. Anal. Chim. Acta. 2014. 826: 61–68. doi: 10.1016/j.aca.2014.04.002.

Humbel, S.

M. Svensson, S. Humbel, R.D.J. Froese, T. Matsubara, et al. “ONIOM: A Multilayered Integrated MO + MM Method for Geometry Optimizations and Single Point Energy Predictions A Test for Diels−Alder Reactions and Pt(P(t-Bu)3)2+ H2 Oxidative Addition”. J. Phys. Chem. 1996. 100(50): 19357–19363. doi: 10.1021/jp962071j.

Ishigaki, M.

J. Grabska, M. Ishigaki, K.B. Beć, M.J. Wójcik, Y. Ozaki. “Correlations Between Structure and Near-Infrared Spectra of Saturated and Unsaturated Carboxylic Acids. Insight from Anharmonic Density Functional Theory Calculations”. J. Phys. Chem. A. 2017. 121(18): 3437–3451. doi: 10.1021/acs.jpca.7b02053.

Iwamoto, R.

R. Iwamoto. “Near-Infrared Spectroscopy as a Useful Tool for Analysis in Solution in Common Organic Solvents”. Appl. Spectrosc. 2009. 63(3): 354−362. doi: 10.1366/000370209787598942.

Jung, Y.M.

Y.M. Jung, B. Czarnik-Matusewicz, Y. Ozaki. “Two-Dimensional Infrared, Two-Dimensional Raman, and Two-Dimensional Infrared and Raman Heterospectral Correlation Studies of Secondary Structure of β-Lactoglobulin in Buffer Solutions”. J. Phys. Chem. B. 2000. 104(32): 7812–7817. doi: 10.1021/jp0008041.

Kazarian, S.G.

S.E. Glassford, B. Byrne, S.G. Kazarian. “Recent Applications of ATR FTIR Spectroscopy and Imaging to Proteins”. Biochim. Biophys. Acta Proteins Proteom. 2013. 1834(12): 2849–2858. doi: 10.1016/j.bbapap.2013.07.015.

Kirchler, C.G.

S. Mayr, J. Schmelzer, C.G. Kirchler, C.K. Pezzei, et al. “Theae nigrae folium: Comparing the Analytical Performance of Benchtop and Handheld Near-Infrared Spectrometers”. Talanta. 2021. 221: 121165. doi: 10.1016/j.talanta.2020.121165.

J. Grabska, K.B. Beć, C.G. Kirchler, Y. Ozaki, et al. “Distinct Difference in Sensitivity of NIR vs. IR Bands of Melamine to Inter-Molecular Interactions with Impact on Analytical Spectroscopy Explained by Anharmonic Quantum Mechanical Study”. Molecules. 2019. 24(7): 1402. doi: 10.3390/molecules24071402.

K.B. Beć, J. Grabska, C.G. Kirchler, C.W. Huck. “NIR Spectra Simulation of Thymol for Better Understanding of the Spectra Forming Factors, Phase and Concentration Effects, and PLS Regression Features”. J. Mol. Liq. 2018. 268: 895–902. doi: 10.1016/j.molliq.2018.08.011.

König, C.

D. Madsen, O. Christiansen, C. König. “Anharmonic Vibrational Spectra from Double Incremental Potential Energy and Dipole Surfaces”. Phys. Chem. Chem. Phys. 2018. 20: 3445–3456. doi: 10.1039/C7CP07190F.

Kuenzer, U.

U. Kuenzer, T.S. Hofer. “A Four-Dimensional Numerov Approach and Its Application to the Vibrational Eigenstates of Linear Triatomic Molecules: The Interplay Between Anharmonicity and Inter-Mode Coupling”. Chem. Phys. 2019. 520: 88–99. doi: 10.1016/j.chemphys.2019.01.007.

Kvalheim, O.M.

O.M. Kvalheim. “Interpretation of Partial Least Squares Regression Models by Means of Target Projection and Selectivity Ratio Plots”. J. Chemometrics. 2010. 24(7–8): 496–504. doi: 10.1002/cem.1289.

Lazzari, S.

R. Benassi, E. Ferrari, S. Lazzari, F. Spagnolo, et al. “Theoretical Study on Curcumin: A Comparison of Calculated Spectroscopic Properties with NMR, UV–Vis, and IR Experimental Data”. J. Mol. Struct. 2008. 892(1–3): 168–176. doi: 10.1016/j.molstruc.2008.05.024.

Lichtblau, D.

N. Brown, D. Lichtblau, T. Fearn, M. Strlič. “Characterisation of 19th and 20th Century Chinese Paper”. Herit. Sci. 2017. 5: 47. doi: 10.1186/s40494-017-0158-x.

Liu, Y.

H. Ghimire, M. Venkataramani, Z. Bian, Y. Liu, et al. “ATR-FTIR Spectral Discrimination Between Normal and Tumorous Mouse Models of Lymphoma and Melanoma from Serum Samples”. Sci. Rep. 2017. 7: 16993. doi: 10.1038/s41598-017-17027-4.

Longhi, G.

L. Paoloni, G. Mazzeo, G. Longhi, S. Abbate, et al. “Toward Fully Unsupervised Anharmonic Computations Complementing Experiment for Robust and Reliable Assignment and Interpretation of IR and VCD Spectra from Mid-IR to NIR: The Case of 2,3-Butanediol and trans-1,2-Cyclohexanediol”. J. Phys. Chem. A. 2020. 124(5): 1011−1024. doi: 10.1021/acs.jpca.9b11025.

Luo, Z.

Z. Luo, K.R. Thorp, H.A. Abdel-Haleem. “A High-Throughput Quantification of Resin and Rubber Contents in Parthenium Argentatum Using Near-Infrared (NIR) Spectroscopy”. Plant Methods. 2019. 15: 154. doi: 10.1186/s13007-019-0544-3.

Lutz, O.M.D.

O.M.D. Lutz, G.K. Bonn, B.M. Rode, C.W. Huck. “Reproducible Quantification of Ethanol in Gasoline via a Customized Mobile Near-Infrared Spectrometer”. Anal. Chim. Acta. 2014. 826: 61–68. doi: 10.1016/j.aca.2014.04.002.

Madsen, D.

D. Madsen, O. Christiansen, C. König. “Anharmonic Vibrational Spectra from Double Incremental Potential Energy and Dipole Surfaces”. Phys. Chem. Chem. Phys. 2018. 20: 3445–3456. doi: 10.1039/C7CP07190F.

Matsubara, T.

M. Svensson, S. Humbel, R.D.J. Froese, T. Matsubara, et al. “ONIOM: A Multilayered Integrated MO + MM Method for Geometry Optimizations and Single Point Energy Predictions A Test for Diels−Alder Reactions and Pt(P(t-Bu)3)2+ H2 Oxidative Addition”. J. Phys. Chem. 1996. 100(50): 19357–19363. doi: 10.1021/jp962071j.

Mayr, S.

S. Mayr, K.B. Beć, J. Grabska, E. Schneckenreiter, et al. “Near-Infrared Spectroscopy in Quality Control of Piper nigrum: A Comparison of Performance of Benchtop and Handheld Spectrometers”. Talanta. 2021. 223(Part 2): 121809. doi: 10.1016/j.talanta.2020.121809.

S. Mayr, J. Schmelzer, C.G. Kirchler, C.K. Pezzei, et al. “Theae nigrae folium: Comparing the Analytical Performance of Benchtop and Handheld Near-Infrared Spectrometers”. Talanta. 2021. 221: 121165. doi: 10.1016/j.talanta.2020.121165.

Mazzeo, G.

L. Paoloni, G. Mazzeo, G. Longhi, S. Abbate, et al. “Toward Fully Unsupervised Anharmonic Computations Complementing Experiment for Robust and Reliable Assignment and Interpretation of IR and VCD Spectra from Mid-IR to NIR: The Case of 2,3-Butanediol and trans-1,2-Cyclohexanediol”. J. Phys. Chem. A. 2020. 124(5): 1011−1024. doi: 10.1021/acs.jpca.9b11025.

Merten, C.

C. Merten, J. Bloino, V. Barone, Y. Xu. “Anharmonicity Effects in the Vibrational CD Spectra of Propylene Oxide”. J. Phys. Chem. Lett. 2013. 4(20): 3424–3428. doi: 10.1021/jz401854y.

Morisawa, Y.

M.A. Czarnecki, Y. Morisawa, Y. Futami, Y. Ozaki. “Advances in Molecular Structure and Interaction Studies Using Near-Infrared Spectroscopy”. Chem. Rev. 2015. 115(18): 9707–9744. doi: 10.1021/cr500013u.

Nakajima, T.

K.B. Beć, M.J. Wójcik, T. Nakajima. “Quantum Chemical Calculations of Basic Molecules: Alcohols and Carboxylic Acids”. NIR News. 2016. 27(8): 15–21. doi: 10.1255/nirn.1650.

Nisha, P.

P. Nisha, R.S. Singhal, A.B. Pandit. “The Degradation Kinetics of Flavor in Black Pepper (Piper nigrum L.)”. J. Food Eng. 2009. 92(1): 44–49. doi: 10.1016/j.jfoodeng.2008.10.018.

Noda, I.

I. Noda. “Generalized Two-Dimensional Correlation Method Applicable to Infrared, Raman, and Other Types of Spectroscopy”. Appl. Spectrosc. 1993. 47(9): 1329–1336. doi: 10.1366/0003702934067694.

Norris, L.S.

L.S. Norris, M.A. Ratner, A.E. Roitberg, R.B. Gerber. “Moller–Plesset Perturbation Theory Applied to Vibrational Problems”. J. Chem. Phys. 1996. 105(24): 1126. doi: 10.1063/1.472922.

Oschetzki, D.

D. Oschetzki, X. Zeng, H. Beckers, K. Banert, et al. “Azidoacetylene-Interpretation of Gas Phase Infrared Spectra Based on High-Level Vibrational Configuration Interaction Calculations”. Phys. Chem. Chem. Phys. 2013. 15: 6719–6725. doi: 10.1039/C3CP50268F.

Ozaki, Y.

J. Grabska, K.B. Beć, C.G. Kirchler, Y. Ozaki, et al. “Distinct Difference in Sensitivity of NIR vs. IR Bands of Melamine to Inter-Molecular Interactions with Impact on Analytical Spectroscopy Explained by Anharmonic Quantum Mechanical Study”. Molecules. 2019. 24(7): 1402. doi: 10.3390/molecules24071402.

J. Grabska, M. Ishigaki, K.B. Beć, M.J. Wójcik, Y. Ozaki. “Correlations Between Structure and Near-Infrared Spectra of Saturated and Unsaturated Carboxylic Acids. Insight from Anharmonic Density Functional Theory Calculations”. J. Phys. Chem. A. 2017. 121(18): 3437–3451. doi: 10.1021/acs.jpca.7b02053.

J. Grabska, M.A. Czarnecki, K.B. Beć, Y. Ozaki. “Spectroscopic and Quantum Mechanical Calculation Study of the Effect of Isotopic Substitution on NIR Spectra of Methanol”. J. Phys. Chem. A. 2017. 121(41): 7925–7936. doi: 10.1021/acs.jpca.7b08693.

M.A. Czarnecki, Y. Morisawa, Y. Futami, Y. Ozaki. “Advances in Molecular Structure and Interaction Studies Using Near-Infrared Spectroscopy”. Chem. Rev. 2015. 115(18): 9707–9744. doi: 10.1021/cr500013u.

Y.M. Jung, B. Czarnik-Matusewicz, Y. Ozaki. “Two-Dimensional Infrared, Two-Dimensional Raman, and Two-Dimensional Infrared and Raman Heterospectral Correlation Studies of Secondary Structure of β-Lactoglobulin in Buffer Solutions”. J. Phys. Chem. B. 2000. 104(32): 7812–7817. doi: 10.1021/jp0008041.

Pandit, A.B.

P. Nisha, R.S. Singhal, A.B. Pandit. “The Degradation Kinetics of Flavor in Black Pepper (Piper nigrum L.)”. J. Food Eng. 2009. 92(1): 44–49. doi: 10.1016/j.jfoodeng.2008.10.018.

Panek, P.

M. Biczysko, J. Bloino, I. Carnimeo, P. Panek, et al. “Fully Ab Initio IR Spectra for Complex Molecular Systems from Perturbative Vibrational Approaches: Glycine as a Test Case”. J. Mol. Struct. 2021. 1009: 74–82. doi: 10.1016/j.molstruc.2011.10.012.

Paoloni, L.

L. Paoloni, G. Mazzeo, G. Longhi, S. Abbate, et al. “Toward Fully Unsupervised Anharmonic Computations Complementing Experiment for Robust and Reliable Assignment and Interpretation of IR and VCD Spectra from Mid-IR to NIR: The Case of 2,3-Butanediol and trans-1,2-Cyclohexanediol”. J. Phys. Chem. A. 2020. 124(5): 1011−1024. doi: 10.1021/acs.jpca.9b11025.

Paz, P.

D. Pérez-Marín, M.-T. Sánchez, P. Paz, V. González-Dugo, et al. “Postharvest Shelf-Life Discrimination of Nectarines Produced Under Different Irrigation Strategies Using NIR-Spectroscopy”. LWT–Food Sci. Technol. 2011. 44(6): 1405–1414. doi: 10.1016/j.lwt.2011.01.008.

Pérez-Marín, D.

D. Pérez-Marín, M.-T. Sánchez, P. Paz, V. González-Dugo, et al. “Postharvest Shelf-Life Discrimination of Nectarines Produced Under Different Irrigation Strategies Using NIR-Spectroscopy”. LWT–Food Sci. Technol. 2011. 44(6): 1405–1414. doi: 10.1016/j.lwt.2011.01.008.

Pezzei, C.K.

S. Mayr, J. Schmelzer, C.G. Kirchler, C.K. Pezzei, et al. “Theae nigrae folium: Comparing the Analytical Performance of Benchtop and Handheld Near-Infrared Spectrometers”. Talanta. 2021. 221: 121165. doi: 10.1016/j.talanta.2020.121165.

Ratner, M.A.

L.S. Norris, M.A. Ratner, A.E. Roitberg, R.B. Gerber. “Moller–Plesset Perturbation Theory Applied to Vibrational Problems”. J. Chem. Phys. 1996. 105(24): 1126. doi: 10.1063/1.472922.

Rode, B.M.

O.M.D. Lutz, G.K. Bonn, B.M. Rode, C.W. Huck. “Reproducible Quantification of Ethanol in Gasoline via a Customized Mobile Near-Infrared Spectrometer”. Anal. Chim. Acta. 2014. 826: 61–68. doi: 10.1016/j.aca.2014.04.002.

Roitberg, A.E.

L.S. Norris, M.A. Ratner, A.E. Roitberg, R.B. Gerber. “Moller–Plesset Perturbation Theory Applied to Vibrational Problems”. J. Chem. Phys. 1996. 105(24): 1126. doi: 10.1063/1.472922.

Roy, T.K.

T.K. Roy, R. Sharmacand, R.B. Gerber. “First-Principles Anharmonic Quantum Calculations for Peptide Spectroscopy: VSCF Calculations and Comparison with Experiments”. Phys. Chem. Chem. Phys. 2016. 18(3): 1607. doi: 10.1039/C5CP05979H.

T.K. Roy, R.B. Gerber. “Vibrational Self-Consistent Field Calculations for Spectroscopy of Biological Molecules: New Algorithmic Developments and Applications”. Phys. Chem. Chem. Phys. 2013. 15(24): 9468–9492. doi: 10.1039/C3CP50739D.

Sánchez, M.-T.

D. Pérez-Marín, M.-T. Sánchez, P. Paz, V. González-Dugo, et al. “Postharvest Shelf-Life Discrimination of Nectarines Produced Under Different Irrigation Strategies Using NIR-Spectroscopy”. LWT–Food Sci. Technol. 2011. 44(6): 1405–1414. doi: 10.1016/j.lwt.2011.01.008.

Schmelzer, J.

S. Mayr, J. Schmelzer, C.G. Kirchler, C.K. Pezzei, et al. “Theae nigrae folium: Comparing the Analytical Performance of Benchtop and Handheld Near-Infrared Spectrometers”. Talanta. 2021. 221: 121165. doi: 10.1016/j.talanta.2020.121165.

Schneckenreiter, E.

S. Mayr, K.B. Beć, J. Grabska, E. Schneckenreiter, et al. “Near-Infrared Spectroscopy in Quality Control of Piper nigrum: A Comparison of Performance of Benchtop and Handheld Spectrometers”. Talanta. 2021. 223(Part 2): 121809. doi: 10.1016/j.talanta.2020.121809.

Schuler, M.J.

M.J. Schuler, T.S. Hofer, C.W. Huck. “Assessing the Predictability of Anharmonic Vibrational Modes at the Example of Hydroxyl Groups: Ad Hoc Construction of Localised Modes and the Influence of Structural Solute–Solvent Motifs”. Phys. Chem. Chem. Phys. 2017. 19: 11990–12001. doi: 10.1039/C7CP01662J.

Sharmacand, R.

T.K. Roy, R. Sharmacand, R.B. Gerber. “First-Principles Anharmonic Quantum Calculations for Peptide Spectroscopy: VSCF Calculations and Comparison with Experiments”. Phys. Chem. Chem. Phys. 2016. 18(3): 1607. doi: 10.1039/C5CP05979H.

Siesler, H.W.

M.A. Czarnecki, P. Wu, H.W. Siesler“2D FT-NIR and FT-IR Correlation Analysis of Temperature-Induced Changes of Nylon 12”. Chem. Phys. Lett. 1998. 283(5–6): 326–332. doi: 10.1016/S0009-2614(97)01397-3.

Singh, S.

S. Singh, R. Szostak, M.A. Czarnecki. “Vibrational Intensities and Anharmonicity in MIR, NIR and Raman Spectra of Liquid CHCl3, CDCl3, CHBr3, and CDBr3: Spectroscopic and Theoretical Study”. J. Mol. Liq. 2021. 336: 116277. doi: 10.1016/j.molliq.2021.116277.

S. Singh, M.A. Czarnecki. “How Much Anharmonicity is in Vibrational Spectra of CH3I and CD3I?”. Spectrochim. Acta, Part A. 2021. 248: 119176. doi: 10.1016/j.saa.2020.119176.

Singhal, R.S.

P. Nisha, R.S. Singhal, A.B. Pandit. “The Degradation Kinetics of Flavor in Black Pepper (Piper nigrum L.)”. J. Food Eng. 2009. 92(1): 44–49. doi: 10.1016/j.jfoodeng.2008.10.018.

Smith, M.J.

F.E. Barton, D.S. Himmersbach II, J.H. Duckworth, M.J. Smith. “Two-Dimensional Vibrational Spectroscopy: Correlation of Mid-and Near-Infrared Regions”. Appl. Spectrosc. 1992. 46(3): 420–429. doi: 10.1366/0003702924125375.

Soldado, A.

B. de la Roza-Delgado, A. Garrido-Varo, A. Soldado, A. Gonzalez Arrojo, et al. “Matching Portable NIRS Instruments for In Situ Monitoring Indicators of Milk Composition”. Food Control. 2017. 76: 74–81. doi: 10.1016/j.foodcont.2017.01.004.

Spagnolo, F.

R. Benassi, E. Ferrari, S. Lazzari, F. Spagnolo, et al. “Theoretical Study on Curcumin: A Comparison of Calculated Spectroscopic Properties with NMR, UV–Vis, and IR Experimental Data”. J. Mol. Struct. 2008. 892(1–3): 168–176. doi: 10.1016/j.molstruc.2008.05.024.

Srinivasan, K.

K. Srinivasan. “Black Pepper and its Pungent Principle-Piperine: A Review of Diverse Physiological Effects”. Crit. Rev. Food Sci. Nutr. 2007. 47(8): 735–748. doi: 10.1080/10408390601062054.

Strlic, M.

N. Brown, D. Lichtblau, T. Fearn, M. Strlič. “Characterisation of 19th and 20th Century Chinese Paper”. Herit. Sci. 2017. 5: 47. doi: 10.1186/s40494-017-0158-x.

Svensson, M.

M. Svensson, S. Humbel, R.D.J. Froese, T. Matsubara, et al. “ONIOM: A Multilayered Integrated MO + MM Method for Geometry Optimizations and Single Point Energy Predictions A Test for Diels−Alder Reactions and Pt(P(t-Bu)3)2+ H2 Oxidative Addition”. J. Phys. Chem. 1996. 100(50): 19357–19363. doi: 10.1021/jp962071j.

Szostak, R.

S. Singh, R. Szostak, M.A. Czarnecki. “Vibrational Intensities and Anharmonicity in MIR, NIR and Raman Spectra of Liquid CHCl3, CDCl3, CHBr3, and CDBr3: Spectroscopic and Theoretical Study”. J. Mol. Liq. 2021. 336: 116277. doi: 10.1016/j.molliq.2021.116277.

Thorp, K.R.

Z. Luo, K.R. Thorp, H.A. Abdel-Haleem. “A High-Throughput Quantification of Resin and Rubber Contents in Parthenium Argentatum Using Near-Infrared (NIR) Spectroscopy”. Plant Methods. 2019. 15: 154. doi: 10.1186/s13007-019-0544-3.

Tjandra Nugraha, D.

D. Tjandra Nugraha, J.-L. Zinia Zaukuu, J.P. Aguinaga Bósquez, Z. Bodor, et al. “Near-Infrared Spectroscopy and Aquaphotomics for Monitoring Mung Bean (Vigna radiata) Sprout Growth and Validation of Ascorbic Acid Content”. Sensors. 2021. 21(2): 611. doi: 10.3390/s21020611.

Tobin, F.

J.M. Bowman, K. Christoffel, F. Tobin. “Application of SCF-SI Theory to Vibrational Motion in Polyatomic Molecules”. J. Phys. Chem. 1979. 83(8): 905–912. doi: 10.1021/j100471a005.

Venkataramani, M.

H. Ghimire, M. Venkataramani, Z. Bian, Y. Liu, et al. “ATR-FTIR Spectral Discrimination Between Normal and Tumorous Mouse Models of Lymphoma and Melanoma from Serum Samples”. Sci. Rep. 2017. 7: 16993. doi: 10.1038/s41598-017-17027-4.

Wójcik, M.J.

J. Grabska, M. Ishigaki, K.B. Beć, M.J. Wójcik, Y. Ozaki. “Correlations Between Structure and Near-Infrared Spectra of Saturated and Unsaturated Carboxylic Acids. Insight from Anharmonic Density Functional Theory Calculations”. J. Phys. Chem. A. 2017. 121(18): 3437–3451. doi: 10.1021/acs.jpca.7b02053.

K.B. Beć, M.J. Wójcik, T. Nakajima. “Quantum Chemical Calculations of Basic Molecules: Alcohols and Carboxylic Acids”. NIR News. 2016. 27(8): 15–21. doi: 10.1255/nirn.1650.

Wu, P.

M.A. Czarnecki, P. Wu, H.W. Siesler“2D FT-NIR and FT-IR Correlation Analysis of Temperature-Induced Changes of Nylon 12”. Chem. Phys. Lett. 1998. 283(5–6): 326–332. doi: 10.1016/S0009-2614(97)01397-3.

Xu, Y.

C. Merten, J. Bloino, V. Barone, Y. Xu. “Anharmonicity Effects in the Vibrational CD Spectra of Propylene Oxide”. J. Phys. Chem. Lett. 2013. 4(20): 3424–3428. doi: 10.1021/jz401854y.

Zeng, X.

D. Oschetzki, X. Zeng, H. Beckers, K. Banert, et al. “Azidoacetylene-Interpretation of Gas Phase Infrared Spectra Based on High-Level Vibrational Configuration Interaction Calculations”. Phys. Chem. Chem. Phys. 2013. 15: 6719–6725. doi: 10.1039/C3CP50268F.

Zinia Zaukuu, J.-L.

D. Tjandra Nugraha, J.-L. Zinia Zaukuu, J.P. Aguinaga Bósquez, Z. Bodor, et al. “Near-Infrared Spectroscopy and Aquaphotomics for Monitoring Mung Bean (Vigna radiata) Sprout Growth and Validation of Ascorbic Acid Content”. Sensors. 2021. 21(2): 611. doi: 10.3390/s21020611.

Acc. Chem. Res (1)

J.M. Bowman. “The Self-Consistent-Field Approach to Polyatomic Vibrations”. Acc. Chem. Res. 1986. 19(7): 202–208. doi: 10.1021/ar00127a002.

Anal. Chim. Acta (1)

O.M.D. Lutz, G.K. Bonn, B.M. Rode, C.W. Huck. “Reproducible Quantification of Ethanol in Gasoline via a Customized Mobile Near-Infrared Spectrometer”. Anal. Chim. Acta. 2014. 826: 61–68. doi: 10.1016/j.aca.2014.04.002.

Appl. Spectrosc (4)

I. Noda. “Generalized Two-Dimensional Correlation Method Applicable to Infrared, Raman, and Other Types of Spectroscopy”. Appl. Spectrosc. 1993. 47(9): 1329–1336. doi: 10.1366/0003702934067694.

F.E. Barton, D.S. Himmersbach II, J.H. Duckworth, M.J. Smith. “Two-Dimensional Vibrational Spectroscopy: Correlation of Mid-and Near-Infrared Regions”. Appl. Spectrosc. 1992. 46(3): 420–429. doi: 10.1366/0003702924125375.

R. Iwamoto. “Near-Infrared Spectroscopy as a Useful Tool for Analysis in Solution in Common Organic Solvents”. Appl. Spectrosc. 2009. 63(3): 354−362. doi: 10.1366/000370209787598942.

R. Crocombe. “Portable Spectroscopy”. Appl. Spectrosc. 2018. 72(12): 1701–1751. doi: 10.1177/0003702818809719.

Biochim. Biophys. Acta Proteins Proteom (1)

S.E. Glassford, B. Byrne, S.G. Kazarian. “Recent Applications of ATR FTIR Spectroscopy and Imaging to Proteins”. Biochim. Biophys. Acta Proteins Proteom. 2013. 1834(12): 2849–2858. doi: 10.1016/j.bbapap.2013.07.015.

Chem. Eur. J (1)

K.B. Becć, J. Grabska, C.W. Huck. “Principles and Applications of Miniaturized Near-Infrared (NIR) Spectrometers”. Chem. Eur. J. 2021. 27(5): 1514–1532. doi: 10.1002/chem.202002838.

Chem. Phys (1)

U. Kuenzer, T.S. Hofer. “A Four-Dimensional Numerov Approach and Its Application to the Vibrational Eigenstates of Linear Triatomic Molecules: The Interplay Between Anharmonicity and Inter-Mode Coupling”. Chem. Phys. 2019. 520: 88–99. doi: 10.1016/j.chemphys.2019.01.007.

Chem. Phys. Lett (1)

M.A. Czarnecki, P. Wu, H.W. Siesler“2D FT-NIR and FT-IR Correlation Analysis of Temperature-Induced Changes of Nylon 12”. Chem. Phys. Lett. 1998. 283(5–6): 326–332. doi: 10.1016/S0009-2614(97)01397-3.

Chem. Rev (1)

M.A. Czarnecki, Y. Morisawa, Y. Futami, Y. Ozaki. “Advances in Molecular Structure and Interaction Studies Using Near-Infrared Spectroscopy”. Chem. Rev. 2015. 115(18): 9707–9744. doi: 10.1021/cr500013u.

Crit. Rev. Food Sci. Nutr (1)

K. Srinivasan. “Black Pepper and its Pungent Principle-Piperine: A Review of Diverse Physiological Effects”. Crit. Rev. Food Sci. Nutr. 2007. 47(8): 735–748. doi: 10.1080/10408390601062054.

Food Control (1)

B. de la Roza-Delgado, A. Garrido-Varo, A. Soldado, A. Gonzalez Arrojo, et al. “Matching Portable NIRS Instruments for In Situ Monitoring Indicators of Milk Composition”. Food Control. 2017. 76: 74–81. doi: 10.1016/j.foodcont.2017.01.004.

Front. Chem (1)

K.B. Becć and C.W. Huck. “Breakthrough Potential in Near-Infrared Spectroscopy: Spectra Simulation. A Review of Recent Developments”. Front. Chem. 2019. 7: 48doi: 10.3389/fchem.2019.00048.

Herit. Sci (1)

N. Brown, D. Lichtblau, T. Fearn, M. Strlič. “Characterisation of 19th and 20th Century Chinese Paper”. Herit. Sci. 2017. 5: 47. doi: 10.1186/s40494-017-0158-x.

Int. J. Quantum Chem (1)

J. Bloino, A. Baiardi, M. Biczysko. “Aiming at an Accurate Prediction of Vibrational and Electronic Spectra for Medium-to-Large Molecules: An Overview”. Int. J. Quantum Chem. 2016. 116(21): 1543–1574. doi: 10.1002/qua.25188.

J. Chem. Phys (2)

J.M. Bowman. “Self Consistent Field Energies and Wavefunctions for Coupled Oscillators”. J. Chem. Phys. 1978. 68(2): 608. doi: 10.1063/1.435782.

L.S. Norris, M.A. Ratner, A.E. Roitberg, R.B. Gerber. “Moller–Plesset Perturbation Theory Applied to Vibrational Problems”. J. Chem. Phys. 1996. 105(24): 1126. doi: 10.1063/1.472922.

J. Chemometrics (1)

O.M. Kvalheim. “Interpretation of Partial Least Squares Regression Models by Means of Target Projection and Selectivity Ratio Plots”. J. Chemometrics. 2010. 24(7–8): 496–504. doi: 10.1002/cem.1289.

J. Food Eng (1)

P. Nisha, R.S. Singhal, A.B. Pandit. “The Degradation Kinetics of Flavor in Black Pepper (Piper nigrum L.)”. J. Food Eng. 2009. 92(1): 44–49. doi: 10.1016/j.jfoodeng.2008.10.018.

J. Mol. Liq (2)

K.B. Beć, J. Grabska, C.G. Kirchler, C.W. Huck. “NIR Spectra Simulation of Thymol for Better Understanding of the Spectra Forming Factors, Phase and Concentration Effects, and PLS Regression Features”. J. Mol. Liq. 2018. 268: 895–902. doi: 10.1016/j.molliq.2018.08.011.

S. Singh, R. Szostak, M.A. Czarnecki. “Vibrational Intensities and Anharmonicity in MIR, NIR and Raman Spectra of Liquid CHCl3, CDCl3, CHBr3, and CDBr3: Spectroscopic and Theoretical Study”. J. Mol. Liq. 2021. 336: 116277. doi: 10.1016/j.molliq.2021.116277.

J. Mol. Struct (2)

M. Biczysko, J. Bloino, I. Carnimeo, P. Panek, et al. “Fully Ab Initio IR Spectra for Complex Molecular Systems from Perturbative Vibrational Approaches: Glycine as a Test Case”. J. Mol. Struct. 2021. 1009: 74–82. doi: 10.1016/j.molstruc.2011.10.012.

R. Benassi, E. Ferrari, S. Lazzari, F. Spagnolo, et al. “Theoretical Study on Curcumin: A Comparison of Calculated Spectroscopic Properties with NMR, UV–Vis, and IR Experimental Data”. J. Mol. Struct. 2008. 892(1–3): 168–176. doi: 10.1016/j.molstruc.2008.05.024.

J. Phys. Chem (2)

M. Svensson, S. Humbel, R.D.J. Froese, T. Matsubara, et al. “ONIOM: A Multilayered Integrated MO + MM Method for Geometry Optimizations and Single Point Energy Predictions A Test for Diels−Alder Reactions and Pt(P(t-Bu)3)2+ H2 Oxidative Addition”. J. Phys. Chem. 1996. 100(50): 19357–19363. doi: 10.1021/jp962071j.

J.M. Bowman, K. Christoffel, F. Tobin. “Application of SCF-SI Theory to Vibrational Motion in Polyatomic Molecules”. J. Phys. Chem. 1979. 83(8): 905–912. doi: 10.1021/j100471a005.

J. Phys. Chem. A (3)

L. Paoloni, G. Mazzeo, G. Longhi, S. Abbate, et al. “Toward Fully Unsupervised Anharmonic Computations Complementing Experiment for Robust and Reliable Assignment and Interpretation of IR and VCD Spectra from Mid-IR to NIR: The Case of 2,3-Butanediol and trans-1,2-Cyclohexanediol”. J. Phys. Chem. A. 2020. 124(5): 1011−1024. doi: 10.1021/acs.jpca.9b11025.

J. Grabska, M.A. Czarnecki, K.B. Beć, Y. Ozaki. “Spectroscopic and Quantum Mechanical Calculation Study of the Effect of Isotopic Substitution on NIR Spectra of Methanol”. J. Phys. Chem. A. 2017. 121(41): 7925–7936. doi: 10.1021/acs.jpca.7b08693.

J. Grabska, M. Ishigaki, K.B. Beć, M.J. Wójcik, Y. Ozaki. “Correlations Between Structure and Near-Infrared Spectra of Saturated and Unsaturated Carboxylic Acids. Insight from Anharmonic Density Functional Theory Calculations”. J. Phys. Chem. A. 2017. 121(18): 3437–3451. doi: 10.1021/acs.jpca.7b02053.

J. Phys. Chem. B (1)

Y.M. Jung, B. Czarnik-Matusewicz, Y. Ozaki. “Two-Dimensional Infrared, Two-Dimensional Raman, and Two-Dimensional Infrared and Raman Heterospectral Correlation Studies of Secondary Structure of β-Lactoglobulin in Buffer Solutions”. J. Phys. Chem. B. 2000. 104(32): 7812–7817. doi: 10.1021/jp0008041.

J. Phys. Chem. Lett (1)

C. Merten, J. Bloino, V. Barone, Y. Xu. “Anharmonicity Effects in the Vibrational CD Spectra of Propylene Oxide”. J. Phys. Chem. Lett. 2013. 4(20): 3424–3428. doi: 10.1021/jz401854y.

LWT–Food Sci. Technol (1)

D. Pérez-Marín, M.-T. Sánchez, P. Paz, V. González-Dugo, et al. “Postharvest Shelf-Life Discrimination of Nectarines Produced Under Different Irrigation Strategies Using NIR-Spectroscopy”. LWT–Food Sci. Technol. 2011. 44(6): 1405–1414. doi: 10.1016/j.lwt.2011.01.008.

Molecules (1)

J. Grabska, K.B. Beć, C.G. Kirchler, Y. Ozaki, et al. “Distinct Difference in Sensitivity of NIR vs. IR Bands of Melamine to Inter-Molecular Interactions with Impact on Analytical Spectroscopy Explained by Anharmonic Quantum Mechanical Study”. Molecules. 2019. 24(7): 1402. doi: 10.3390/molecules24071402.

Nat. Rev. Methods Primers (1)

V. Barone, S. Alessandrini, M. Biczysko, J.R. Cheeseman, et al. “Computational Molecular Spectroscopy”. Nat. Rev. Methods Primers. 2021. 1: 38. doi: 10.1038/s43586-021-00034-1.

NIR News (1)

K.B. Beć, M.J. Wójcik, T. Nakajima. “Quantum Chemical Calculations of Basic Molecules: Alcohols and Carboxylic Acids”. NIR News. 2016. 27(8): 15–21. doi: 10.1255/nirn.1650.

Phys. Chem. Chem. Phys (5)

D. Madsen, O. Christiansen, C. König. “Anharmonic Vibrational Spectra from Double Incremental Potential Energy and Dipole Surfaces”. Phys. Chem. Chem. Phys. 2018. 20: 3445–3456. doi: 10.1039/C7CP07190F.

M.J. Schuler, T.S. Hofer, C.W. Huck. “Assessing the Predictability of Anharmonic Vibrational Modes at the Example of Hydroxyl Groups: Ad Hoc Construction of Localised Modes and the Influence of Structural Solute–Solvent Motifs”. Phys. Chem. Chem. Phys. 2017. 19: 11990–12001. doi: 10.1039/C7CP01662J.

T.K. Roy, R.B. Gerber. “Vibrational Self-Consistent Field Calculations for Spectroscopy of Biological Molecules: New Algorithmic Developments and Applications”. Phys. Chem. Chem. Phys. 2013. 15(24): 9468–9492. doi: 10.1039/C3CP50739D.

T.K. Roy, R. Sharmacand, R.B. Gerber. “First-Principles Anharmonic Quantum Calculations for Peptide Spectroscopy: VSCF Calculations and Comparison with Experiments”. Phys. Chem. Chem. Phys. 2016. 18(3): 1607. doi: 10.1039/C5CP05979H.

D. Oschetzki, X. Zeng, H. Beckers, K. Banert, et al. “Azidoacetylene-Interpretation of Gas Phase Infrared Spectra Based on High-Level Vibrational Configuration Interaction Calculations”. Phys. Chem. Chem. Phys. 2013. 15: 6719–6725. doi: 10.1039/C3CP50268F.

Plant Methods (1)

Z. Luo, K.R. Thorp, H.A. Abdel-Haleem. “A High-Throughput Quantification of Resin and Rubber Contents in Parthenium Argentatum Using Near-Infrared (NIR) Spectroscopy”. Plant Methods. 2019. 15: 154. doi: 10.1186/s13007-019-0544-3.

Sci. Rep (1)

H. Ghimire, M. Venkataramani, Z. Bian, Y. Liu, et al. “ATR-FTIR Spectral Discrimination Between Normal and Tumorous Mouse Models of Lymphoma and Melanoma from Serum Samples”. Sci. Rep. 2017. 7: 16993. doi: 10.1038/s41598-017-17027-4.

Sensors (1)

D. Tjandra Nugraha, J.-L. Zinia Zaukuu, J.P. Aguinaga Bósquez, Z. Bodor, et al. “Near-Infrared Spectroscopy and Aquaphotomics for Monitoring Mung Bean (Vigna radiata) Sprout Growth and Validation of Ascorbic Acid Content”. Sensors. 2021. 21(2): 611. doi: 10.3390/s21020611.

Spectrochim. Acta, Part A (2)

K.B. Becć, J. Grabska, C.W. Huck. “Current and Future Research Directions in Computer-Aided Near-Infrared Spectroscopy: A Perspective”. Spectrochim. Acta, Part A. 2021. 254: 119625. doi: 10.1016/j.saa.2021.119625.

S. Singh, M.A. Czarnecki. “How Much Anharmonicity is in Vibrational Spectra of CH3I and CD3I?”. Spectrochim. Acta, Part A. 2021. 248: 119176. doi: 10.1016/j.saa.2020.119176.

Spectroscopy (1)

M.S. Bradley. “Lineshapes in IR and Raman Spectroscopy: A Primer”. Spectroscopy. 2015. 30(11): 42–46.

Talanta (2)

S. Mayr, K.B. Beć, J. Grabska, E. Schneckenreiter, et al. “Near-Infrared Spectroscopy in Quality Control of Piper nigrum: A Comparison of Performance of Benchtop and Handheld Spectrometers”. Talanta. 2021. 223(Part 2): 121809. doi: 10.1016/j.talanta.2020.121809.

S. Mayr, J. Schmelzer, C.G. Kirchler, C.K. Pezzei, et al. “Theae nigrae folium: Comparing the Analytical Performance of Benchtop and Handheld Near-Infrared Spectrometers”. Talanta. 2021. 221: 121165. doi: 10.1016/j.talanta.2020.121165.

Other (27)

T. Okura. “Hardware of Near-Infrared Spectroscopy”. In: Y. Ozaki, C.W. Huck, S. Tsuchikawa, S.B. Engelsen, editors. Near-Infrared Spectroscopy: Theory, Spectral Analysis, Instrumentation, and Applications. Singapore: Springer Nature, 2021. Chap. 10, Pp. 235–264. doi: 10.1007/978-981-15-8648-4_10.

S. Mayr, S. Strasser, C.G. Kirchler, F. Meischl, et al. “Quantification of Silymarin in Silybi mariani fructus: Challenging the Analytical Performance of Benchtop vs. Handheld NIR Spectrometers on Whole Seeds”. Planta Med. 2021. 87(6): 1–13. doi: 10.1055/a-1326-2497.

C. Puzzarini, N. Tasinato, J. Bloino, L. Spada, et al. “State-of-the-Art Computation of the Rotational and IR Spectra of the Methyl–Cyclopropyl Cation: Hints on Its Detection in Space”. Phys. Chem. Chem. Phys. 2019. 21: 3431–3439. doi: 10.1039/C8CP04629H.

R.B. Gerber, M.A. Ratner. “Self-Consistent-Field Methods for Vibrational Excitations in Polyatomic Systems”. In: R. Prigogine, S.A. Rice, editors. Advances in Chemical Physics: Evolution of Size Effects in Chemical Dynamics Part 1, Volume 70. New York: John Wiley and Sons, 2009. Chap. 4, Pp. 97–132. doi: 10.1002/9780470141199.ch4.

M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, et al. Gaussian 09, Revision E.01, Wallingford, Connecticut: Gaussian, Inc., 2009.

J. Bloino, M. Biczysko. “IR and Raman Spectroscopies Beyond the Harmonic Approximation: The Second-Order Vibrational Perturbation Theory Formulation”. In: J. Reedijk, editor. Reference Module in Chemistry, Molecular Sciences, and Chemical Engineering. Oxford: Elsevier, 2015. doi: 10.1016/B978-0-12-409547-2.10931-X.

N. Ahmad, H. Fazal, B.H. Abbasi, S. Farooq, et al. “Biological Role of Piper Nigrum L. (Black Pepper): A Review”. Asian Pac. J. Trop. Biomed. 2012. 2(3): S1945–S1953. doi: 10.1016/S2221-1691(12)60524-3.

A. Tiwari, K.R. Mahadi, S.Y. Gabhe. “Piperine: A Comprehensive Review of Methods of Isolation, Purification, and Biological Properties”. Med. Drug Discovery. 2020. 7: 100027. doi: 10.1016/j.medidd.2020.100027.

L.G. Weyer, S.C. Lo. “Spectra-Structure Correlations in the Near-Infrared”. In: J.M. Chalmers, P.R. Griffiths, editors. Handbook of Vibrational Spectroscopy. Chichester, UK: John Wiley and Sons, Ltd, 2006. Pp. 1817–1837. doi: 10.1002/0470027320.s4102.

V. Barone, M. Biczysko, J. Bloino, P. Cimino, et al. “CC/DFT Route toward Accurate Structures and Spectroscopic Features for Observed and Elusive Conformers of Flexible Molecules: Pyruvic Acid as a Case Study”. J. Chem. Theory Comput. 2015. 11(9): 4342−4363. doi: 10.1021/acs.jctc.5b00580.

K.B. Beć, J. Grabska, Y. Ozaki. “Advances in Anharmonic Methods and Their Applications in Vibrational Spectroscopies”. In: M.J. Wójcik, H. Nakatsuji, B. Kirtman, Y. Ozaki, editors. Frontiers of Quantum Chemistry. Singapore: Springer Nature, 2017. Chap. 20, Pp. 438–512. doi: 10.1007/978-981-10-5651-2_20.

P. Seidler, O. Christiansen. “Vibrational Coupled Cluster Theory”. In: P. Cársky, J. Pladus, J. Pittner, editors. Recent Progress in Coupled Cluster Methods. New York: Springer Science + Business Media B.V., 2010. Chap. 18, Pp. 491–512. doi: 10.1007/978-90-481-2885-3_18.

B. Igne, E.W. Ciurczak, “Near-Infrared Spectroscopy in the Pharmaceutical Industry”. In: Y. Ozaki, C.W. Huck, S. Tsuchikawa, S.B. Engelsen, editors. Near-Infrared Spectroscopy. Theory, Spectral Analysis, Instrumentation, and Applications. Singapore: Springer Nature, 2021. Chap. 18, Pp. 391–412. doi: 10.1007/978-981-15-8648-4_18.

T. Scherzer, “Applications of NIR Techniques in Polymer Coatings and Synthetic Textiles”. In: Y. Ozaki, C.W. Huck, S. Tsuchikawa, S.B. Engelsen, editors. Near-Infrared Spectroscopy. Theory, Spectral Analysis, Instrumentation, and Applications. Singapore: Springer Nature, 2021. Chap. 21, Pp. 475–516. doi: 10.1007/978-981-15-8648-4_21.

E. Bright Wilson, Jr., J.C. Decius, P.C. Cross. “Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra”. New York: Dover Publications, Inc., 1980.

F.S. Levin. “An Introduction to Quantum Theory”. Cambridge: University Press, 2002. doi: 10.1017/CBO9781139164177.

M.A. Czarnecki, K.B. Beć, J. Grabska, T.S. Hofer, et al. “Overview of Application of NIR Spectroscopy to Physical Chemistry”. In: Y. Ozaki, C.W. Huck, S. Tsuchikawa, S.B. Engelsen, editors. Near-Infrared Spectroscopy. Theory, Spectral Analysis, Instrumentation, and Applications. Singapore: Springer Nature, 2021. Chap. 13, Pp. 297–330. doi: 10.1007/978-981-15-8648-4_13.

K.B. Becć, J. Grabska, T.S. Hofer. “Introduction to Quantum Vibrational Spectroscopy”. In: Y. Ozaki, C.W. Huck, S. Tsuchikawa, S.B. Engelsen, editors. Near-Infrared Spectroscopy. Theory, Spectral Analysis, Instrumentation, and Applications. Singapore: Springer Nature, 2021. Chap. 5, Pp. 83–110. doi: 10.1007/978-981-15-8648-4_5.

Y. Ozaki, C.W. Huck, K.B. Beć. “Near-IR Spectroscopy and Its Applications”. In: V.P. Gupta, editor. Molecular and Laser Spectroscopy. San Diego: Elsevier, 2018. Chap. 3, Pp. 11–38. doi: 10.1016/B978-0-12-849883-5.00002-4.

H.W. Siesler, Y. Ozaki, S. Kawata, H.M. Heise. Near-Infrared Spectroscopy: Principles, Instruments, Applications. Weinheim, Germany: Wiley-VCH, 2002. doi: 10.1002/9783527612666.

Y. Ozaki, W.F. McClure, A.A. Christy. Near Infrared Spectroscopy in Food Science and Technology. New York: Wiley Interscience, 2006. doi:10.1002/0470047704.

E.W. Ciurczak, J.K. Drennen III. Pharmaceutical and Medical Applications of Near-Infrared Spectroscopy. Boca Raton, Florida: CRC Press, 2002. doi: 10.1201/9780203910153.

M. Manley, P.J. Williams. “Applications: Food Science” In: Y. Ozaki, C.W. Huck, S. Tsuchikawa, S.B. Engelsen, editors. Near-Infrared Spectroscopy: Theory, Spectral Analysis, Instrumentation, and Applications. Singapore: Springer Nature, 2021. Chap. 15, Pp. 347–359. doi: 10.1007/978-981-15-8648-4_15.

V.K. Truong, J. Chapman, D. Cozzolino. “Monitoring the Bacterial Response to Antibiotic and Time Growth Using Near-Infrared Spectroscopy Combined with Machine Learning”. Food Anal. Methods. 2021. Online only print. doi: 10.1007/s12161-021-01994-6.

K.B. Becć, J. Grabska, C.W. Huck. “NIR Spectral Analysis of Natural Medicines Supported by Novel Instrumentation, Methods of Data Analysis and Interpretation”. J. Pharm. Biomed. Anal. 2020. 193: 113686. doi: 10.1016/j.jpba.2020.113686.

V. Baeten, P. Dardenne. “Application of NIR in Agriculture”. In: Y. Ozaki, C.W. Huck, S. Tsuchikawa, S.B. Engelsen, editors. Near-Infrared Spectroscopy: Theory, Spectral Analysis, Instrumentation, and Applications. Singapore: Springer Nature, 2021. Chap. 14, Pp. 331–345. doi: 10.1007/978-981-15-8648-4_14.

E. Bobasa, A.D.T. Phan, M. Netzel, H.E. Smyth, et al. “The Use of a Micro Near Infrared Portable Instrument to Predict Bioactive Compounds in a Wild Harvested Fruit: Kakadu Plum (Terminalia ferdinandiana)”. Sensors. 2021. 21(4):1413. doi: 10.3390/s21041413.

Supplementary Material (1)

NameDescription
Supplement 1       sj-pdf-1-asp-10.1177_00037028211027951 - Supplemental material for Theoretical Simulation of Near-Infrared Spectrum of Piperine: Insight into Band Origins and the Features of Regression Models

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.