Abstract

Photoacoustic spectroscopic detection of infrared absorption often produces spectra with enhanced intensities for weaker peaks, enabling the detection of features due to overtones and combinations, as well as less-abundant isotopic species. To illustrate this phenomenon, we present and discuss photoacoustic infrared spectra of calcite. We use linearization of rapid-scan spectra, as well as comparing step-scan and rapid-scan spectra, to demonstrate that saturation is not the driving force behind these enhanced intensities. Our results point to a significant knowledge gap, since a theoretical basis for the enhancement of these weak bands has not yet been developed.

© 2021 The Author(s)

PDF Article

References

  • View by:

  1. A. Rosencwaig, A. Gersho. “Theory of the Photoacoustic Effect with Solids”. J. Appl. Phys. 1976; 47(1): 64–69.
  2. A. Rosencwaig. Photoacoustics and Photoacoustic Spectroscopy., Hoboken: Wiley, 1980.
  3. K.H. Michaelian. Photoacoustic IR spectroscopy: Instrumentation, Applications and Data Analysis., Germany: Wiley-VCH, 2010.
  4. M.M. Thompson, R.A. Palmer. “In situ Fourier transform Infrared Diffuse Reflectance and Photoacoustic Spectroscopy Characterization of Sulfur-Oxygen Species Resulting from the Reaction of SO2 with CaCO3”. Appl. Spectrosc. 1988; 42(6): 945–951.
  5. E. Wentrup-Byrne, L. Rintoul, J. Smith, et al. “Comparison of Vibrational Spectroscopic Techniques for the Characterization of Human Gallstones”. Appl. Spectrosc. 1995; 49(7): 1028–1036.
  6. G. Norton, J. McClelland. “Rapid Determination of Limestone Using Photoacoustic Spectroscopy”. Miner. Eng. 1997; 10(2): 237–240.
  7. O. Gómez, P. Quintana, D. Aguilar, et al. “Photothermal Characterization of Materials Biomineralized by Mollusks”. Rev. Sci. Instrum. 2003; 74(1): 750–754.
  8. N. Guskos, G. Papadopoulos, J. Majszczyk, et al. “Photoacoustic Response of Sea Urchin Tissue”. Rev. Adv. Mater. Sci. 2010; 23: 76–79.
  9. F.C. Meldrum, H. Cölfen H. “Controlling Mineral Morphologies and Structures in Biological and Synthetic Systems”. Chem. Rev. 2008; 108(11): 4332–4432.
  10. S. Weiner. Microarchaeology: Beyond the Visible Archaeological Record., Cambridge, UK: Cambridge University Press, 2010.
  11. A. Gal, K. Kahil, N. Vidavsky, et al. “Particle Accretion Mechanism Underlies Biological Crystal Growth from an Amorphous Precursor Phase”. Adv. Funct. Mater. 2014; 24(34): 5420–5426.
  12. M.B. Toffolo, E. Boaretto. “Nucleation of Aragonite Upon Carbonation of Calcium Oxide and Calcium Hydroxide at Ambient Temperatures and Pressures: A New Indicator of Fire-related Human Activities”. J. Archaeolog. Sci. 2014; 49: 237–248.
  13. L. Regev, K.M. Poduska, L. Addadi, et al. “Distinguishing Between Calcites Formed by Different Mechanisms Using Infrared Spectrometry: Archaeological Applications”. J. Archaeolog. Sci. 2010; 37(12): 3022–3029.
  14. B. Xu, A. Hirsch, L. Kronik, et al. “Vibrational Properties of Isotopically Enriched Materials: The Case of Calcite”. RSC Adv. 2018; 8(59): 33985–33992.
  15. S. Campbell, K.M. Poduska. “Incorporating Far-Infrared Data into Carbonate Mineral Analyses”. Minerals. 2020; 10(7): 628.
  16. K.M. Poduska, L. Regev, E. Boaretto, et al. “Decoupling Local Disorder and Optical Effects in Infrared Spectra: Differentiating Between Calcites with Different Origins”. Adv. Mater. 2011; 23(4): 550–554.
  17. W.B. White. “The Carbonate Minerals”. In: V.C. Farmer, editor. The Infrared Spectra of Minerals. London: Mineralogical Society of Great Britain and Ireland, 1974. Pp. 227–284.
  18. L. Valenzano, Y. Noel, R. Orlando, et al. “Ab Initio Vibrational Spectra and Dielectric Properties of Carbonates: Magnesite, Calcite and Dolomite”. Theor. Chem. Acc. 2007; 117(5–6): 991–1000.
  19. M. Natale, L.N. Lewis. “Application of PAS for the Investigation of Overtones and Combinations in the Near IR”. Appl. Spectrosc. 1982; 36(4): 410–413.
  20. K. Michaelian, Q. Wen, B. Billinghurst, et al. “Far-and Mid-Infrared Photoacoustic Spectra of Tetracene, Pentacene, Perylene and Pyrene”. Vib. Spectrosc. 2012; 58: 50–56.
  21. K. Michaelian, S. Oladepo, J. Shaw, et al. “Raman and Photoacoustic Infrared Spectra of Fluorene Derivatives: Experiment and Calculations”. Vib. Spectrosc. 2014; 74: 33–46.
  22. P.K. Krivoshein, D.S. Volkov, O.B. Rogova, et al. “FTIR Photoacoustic Spectroscopy for Identification and Assessment of Soil Components: Chernozems and their Size Fractions”. Photoacoustics. 2020; 18: 100162.
  23. L. Burggraf, D. Leyden. “Quantitative Photoacoustic Spectroscopy of Intensely Light-scattering Thermally Thick Samples”. Anal. Chem. 1981; 53(6): 759–764.
  24. R. Carter III. “The Application of Linear PA/FT-IR to Polymer-related Problems”. Appl. Spectrosc. 1992; 46(2): 219–224.
  25. A. Pichler, M.G. Sowa MG. “Using the Linearization Approach for Synchronizing the Phase of Photoacoustic Reference and Sample data”. Appl. Spectrosc. 2004; 58(10): 1228–1235.
  26. R. Gueta, A. Natan, L. Addadi, et al. “Local Atomic Order and Infrared Spectra of Biogenic Calcite”. Angew. Chem. Int. Ed. 2007; 46(1–2): 291–294.

2020 (2)

S. Campbell, K.M. Poduska. “Incorporating Far-Infrared Data into Carbonate Mineral Analyses”. Minerals. 2020; 10(7): 628.

P.K. Krivoshein, D.S. Volkov, O.B. Rogova, et al. “FTIR Photoacoustic Spectroscopy for Identification and Assessment of Soil Components: Chernozems and their Size Fractions”. Photoacoustics. 2020; 18: 100162.

2018 (1)

B. Xu, A. Hirsch, L. Kronik, et al. “Vibrational Properties of Isotopically Enriched Materials: The Case of Calcite”. RSC Adv. 2018; 8(59): 33985–33992.

2014 (3)

K. Michaelian, S. Oladepo, J. Shaw, et al. “Raman and Photoacoustic Infrared Spectra of Fluorene Derivatives: Experiment and Calculations”. Vib. Spectrosc. 2014; 74: 33–46.

A. Gal, K. Kahil, N. Vidavsky, et al. “Particle Accretion Mechanism Underlies Biological Crystal Growth from an Amorphous Precursor Phase”. Adv. Funct. Mater. 2014; 24(34): 5420–5426.

M.B. Toffolo, E. Boaretto. “Nucleation of Aragonite Upon Carbonation of Calcium Oxide and Calcium Hydroxide at Ambient Temperatures and Pressures: A New Indicator of Fire-related Human Activities”. J. Archaeolog. Sci. 2014; 49: 237–248.

2012 (1)

K. Michaelian, Q. Wen, B. Billinghurst, et al. “Far-and Mid-Infrared Photoacoustic Spectra of Tetracene, Pentacene, Perylene and Pyrene”. Vib. Spectrosc. 2012; 58: 50–56.

2011 (1)

K.M. Poduska, L. Regev, E. Boaretto, et al. “Decoupling Local Disorder and Optical Effects in Infrared Spectra: Differentiating Between Calcites with Different Origins”. Adv. Mater. 2011; 23(4): 550–554.

2010 (2)

L. Regev, K.M. Poduska, L. Addadi, et al. “Distinguishing Between Calcites Formed by Different Mechanisms Using Infrared Spectrometry: Archaeological Applications”. J. Archaeolog. Sci. 2010; 37(12): 3022–3029.

N. Guskos, G. Papadopoulos, J. Majszczyk, et al. “Photoacoustic Response of Sea Urchin Tissue”. Rev. Adv. Mater. Sci. 2010; 23: 76–79.

2008 (1)

F.C. Meldrum, H. Cölfen H. “Controlling Mineral Morphologies and Structures in Biological and Synthetic Systems”. Chem. Rev. 2008; 108(11): 4332–4432.

2007 (2)

L. Valenzano, Y. Noel, R. Orlando, et al. “Ab Initio Vibrational Spectra and Dielectric Properties of Carbonates: Magnesite, Calcite and Dolomite”. Theor. Chem. Acc. 2007; 117(5–6): 991–1000.

R. Gueta, A. Natan, L. Addadi, et al. “Local Atomic Order and Infrared Spectra of Biogenic Calcite”. Angew. Chem. Int. Ed. 2007; 46(1–2): 291–294.

2004 (1)

A. Pichler, M.G. Sowa MG. “Using the Linearization Approach for Synchronizing the Phase of Photoacoustic Reference and Sample data”. Appl. Spectrosc. 2004; 58(10): 1228–1235.

2003 (1)

O. Gómez, P. Quintana, D. Aguilar, et al. “Photothermal Characterization of Materials Biomineralized by Mollusks”. Rev. Sci. Instrum. 2003; 74(1): 750–754.

1997 (1)

G. Norton, J. McClelland. “Rapid Determination of Limestone Using Photoacoustic Spectroscopy”. Miner. Eng. 1997; 10(2): 237–240.

1995 (1)

E. Wentrup-Byrne, L. Rintoul, J. Smith, et al. “Comparison of Vibrational Spectroscopic Techniques for the Characterization of Human Gallstones”. Appl. Spectrosc. 1995; 49(7): 1028–1036.

1992 (1)

R. Carter III. “The Application of Linear PA/FT-IR to Polymer-related Problems”. Appl. Spectrosc. 1992; 46(2): 219–224.

1988 (1)

M.M. Thompson, R.A. Palmer. “In situ Fourier transform Infrared Diffuse Reflectance and Photoacoustic Spectroscopy Characterization of Sulfur-Oxygen Species Resulting from the Reaction of SO2 with CaCO3”. Appl. Spectrosc. 1988; 42(6): 945–951.

1982 (1)

M. Natale, L.N. Lewis. “Application of PAS for the Investigation of Overtones and Combinations in the Near IR”. Appl. Spectrosc. 1982; 36(4): 410–413.

1981 (1)

L. Burggraf, D. Leyden. “Quantitative Photoacoustic Spectroscopy of Intensely Light-scattering Thermally Thick Samples”. Anal. Chem. 1981; 53(6): 759–764.

1976 (1)

A. Rosencwaig, A. Gersho. “Theory of the Photoacoustic Effect with Solids”. J. Appl. Phys. 1976; 47(1): 64–69.

Addadi, L.

L. Regev, K.M. Poduska, L. Addadi, et al. “Distinguishing Between Calcites Formed by Different Mechanisms Using Infrared Spectrometry: Archaeological Applications”. J. Archaeolog. Sci. 2010; 37(12): 3022–3029.

R. Gueta, A. Natan, L. Addadi, et al. “Local Atomic Order and Infrared Spectra of Biogenic Calcite”. Angew. Chem. Int. Ed. 2007; 46(1–2): 291–294.

Aguilar, D.

O. Gómez, P. Quintana, D. Aguilar, et al. “Photothermal Characterization of Materials Biomineralized by Mollusks”. Rev. Sci. Instrum. 2003; 74(1): 750–754.

Billinghurst, B.

K. Michaelian, Q. Wen, B. Billinghurst, et al. “Far-and Mid-Infrared Photoacoustic Spectra of Tetracene, Pentacene, Perylene and Pyrene”. Vib. Spectrosc. 2012; 58: 50–56.

Boaretto, E.

M.B. Toffolo, E. Boaretto. “Nucleation of Aragonite Upon Carbonation of Calcium Oxide and Calcium Hydroxide at Ambient Temperatures and Pressures: A New Indicator of Fire-related Human Activities”. J. Archaeolog. Sci. 2014; 49: 237–248.

K.M. Poduska, L. Regev, E. Boaretto, et al. “Decoupling Local Disorder and Optical Effects in Infrared Spectra: Differentiating Between Calcites with Different Origins”. Adv. Mater. 2011; 23(4): 550–554.

Burggraf, L.

L. Burggraf, D. Leyden. “Quantitative Photoacoustic Spectroscopy of Intensely Light-scattering Thermally Thick Samples”. Anal. Chem. 1981; 53(6): 759–764.

Campbell, S.

S. Campbell, K.M. Poduska. “Incorporating Far-Infrared Data into Carbonate Mineral Analyses”. Minerals. 2020; 10(7): 628.

Carter III, R.

R. Carter III. “The Application of Linear PA/FT-IR to Polymer-related Problems”. Appl. Spectrosc. 1992; 46(2): 219–224.

Cölfen H, H.

F.C. Meldrum, H. Cölfen H. “Controlling Mineral Morphologies and Structures in Biological and Synthetic Systems”. Chem. Rev. 2008; 108(11): 4332–4432.

Gal, A.

A. Gal, K. Kahil, N. Vidavsky, et al. “Particle Accretion Mechanism Underlies Biological Crystal Growth from an Amorphous Precursor Phase”. Adv. Funct. Mater. 2014; 24(34): 5420–5426.

Gersho, A.

A. Rosencwaig, A. Gersho. “Theory of the Photoacoustic Effect with Solids”. J. Appl. Phys. 1976; 47(1): 64–69.

Gómez, O.

O. Gómez, P. Quintana, D. Aguilar, et al. “Photothermal Characterization of Materials Biomineralized by Mollusks”. Rev. Sci. Instrum. 2003; 74(1): 750–754.

Gueta, R.

R. Gueta, A. Natan, L. Addadi, et al. “Local Atomic Order and Infrared Spectra of Biogenic Calcite”. Angew. Chem. Int. Ed. 2007; 46(1–2): 291–294.

Guskos, N.

N. Guskos, G. Papadopoulos, J. Majszczyk, et al. “Photoacoustic Response of Sea Urchin Tissue”. Rev. Adv. Mater. Sci. 2010; 23: 76–79.

Hirsch, A.

B. Xu, A. Hirsch, L. Kronik, et al. “Vibrational Properties of Isotopically Enriched Materials: The Case of Calcite”. RSC Adv. 2018; 8(59): 33985–33992.

Kahil, K.

A. Gal, K. Kahil, N. Vidavsky, et al. “Particle Accretion Mechanism Underlies Biological Crystal Growth from an Amorphous Precursor Phase”. Adv. Funct. Mater. 2014; 24(34): 5420–5426.

Krivoshein, P.K.

P.K. Krivoshein, D.S. Volkov, O.B. Rogova, et al. “FTIR Photoacoustic Spectroscopy for Identification and Assessment of Soil Components: Chernozems and their Size Fractions”. Photoacoustics. 2020; 18: 100162.

Kronik, L.

B. Xu, A. Hirsch, L. Kronik, et al. “Vibrational Properties of Isotopically Enriched Materials: The Case of Calcite”. RSC Adv. 2018; 8(59): 33985–33992.

Lewis, L.N.

M. Natale, L.N. Lewis. “Application of PAS for the Investigation of Overtones and Combinations in the Near IR”. Appl. Spectrosc. 1982; 36(4): 410–413.

Leyden, D.

L. Burggraf, D. Leyden. “Quantitative Photoacoustic Spectroscopy of Intensely Light-scattering Thermally Thick Samples”. Anal. Chem. 1981; 53(6): 759–764.

Majszczyk, J.

N. Guskos, G. Papadopoulos, J. Majszczyk, et al. “Photoacoustic Response of Sea Urchin Tissue”. Rev. Adv. Mater. Sci. 2010; 23: 76–79.

McClelland, J.

G. Norton, J. McClelland. “Rapid Determination of Limestone Using Photoacoustic Spectroscopy”. Miner. Eng. 1997; 10(2): 237–240.

Meldrum, F.C.

F.C. Meldrum, H. Cölfen H. “Controlling Mineral Morphologies and Structures in Biological and Synthetic Systems”. Chem. Rev. 2008; 108(11): 4332–4432.

Michaelian, K.

K. Michaelian, S. Oladepo, J. Shaw, et al. “Raman and Photoacoustic Infrared Spectra of Fluorene Derivatives: Experiment and Calculations”. Vib. Spectrosc. 2014; 74: 33–46.

K. Michaelian, Q. Wen, B. Billinghurst, et al. “Far-and Mid-Infrared Photoacoustic Spectra of Tetracene, Pentacene, Perylene and Pyrene”. Vib. Spectrosc. 2012; 58: 50–56.

Michaelian, K.H.

K.H. Michaelian. Photoacoustic IR spectroscopy: Instrumentation, Applications and Data Analysis., Germany: Wiley-VCH, 2010.

Natale, M.

M. Natale, L.N. Lewis. “Application of PAS for the Investigation of Overtones and Combinations in the Near IR”. Appl. Spectrosc. 1982; 36(4): 410–413.

Natan, A.

R. Gueta, A. Natan, L. Addadi, et al. “Local Atomic Order and Infrared Spectra of Biogenic Calcite”. Angew. Chem. Int. Ed. 2007; 46(1–2): 291–294.

Noel, Y.

L. Valenzano, Y. Noel, R. Orlando, et al. “Ab Initio Vibrational Spectra and Dielectric Properties of Carbonates: Magnesite, Calcite and Dolomite”. Theor. Chem. Acc. 2007; 117(5–6): 991–1000.

Norton, G.

G. Norton, J. McClelland. “Rapid Determination of Limestone Using Photoacoustic Spectroscopy”. Miner. Eng. 1997; 10(2): 237–240.

Oladepo, S.

K. Michaelian, S. Oladepo, J. Shaw, et al. “Raman and Photoacoustic Infrared Spectra of Fluorene Derivatives: Experiment and Calculations”. Vib. Spectrosc. 2014; 74: 33–46.

Orlando, R.

L. Valenzano, Y. Noel, R. Orlando, et al. “Ab Initio Vibrational Spectra and Dielectric Properties of Carbonates: Magnesite, Calcite and Dolomite”. Theor. Chem. Acc. 2007; 117(5–6): 991–1000.

Palmer, R.A.

M.M. Thompson, R.A. Palmer. “In situ Fourier transform Infrared Diffuse Reflectance and Photoacoustic Spectroscopy Characterization of Sulfur-Oxygen Species Resulting from the Reaction of SO2 with CaCO3”. Appl. Spectrosc. 1988; 42(6): 945–951.

Papadopoulos, G.

N. Guskos, G. Papadopoulos, J. Majszczyk, et al. “Photoacoustic Response of Sea Urchin Tissue”. Rev. Adv. Mater. Sci. 2010; 23: 76–79.

Pichler, A.

A. Pichler, M.G. Sowa MG. “Using the Linearization Approach for Synchronizing the Phase of Photoacoustic Reference and Sample data”. Appl. Spectrosc. 2004; 58(10): 1228–1235.

Poduska, K.M.

S. Campbell, K.M. Poduska. “Incorporating Far-Infrared Data into Carbonate Mineral Analyses”. Minerals. 2020; 10(7): 628.

K.M. Poduska, L. Regev, E. Boaretto, et al. “Decoupling Local Disorder and Optical Effects in Infrared Spectra: Differentiating Between Calcites with Different Origins”. Adv. Mater. 2011; 23(4): 550–554.

L. Regev, K.M. Poduska, L. Addadi, et al. “Distinguishing Between Calcites Formed by Different Mechanisms Using Infrared Spectrometry: Archaeological Applications”. J. Archaeolog. Sci. 2010; 37(12): 3022–3029.

Quintana, P.

O. Gómez, P. Quintana, D. Aguilar, et al. “Photothermal Characterization of Materials Biomineralized by Mollusks”. Rev. Sci. Instrum. 2003; 74(1): 750–754.

Regev, L.

K.M. Poduska, L. Regev, E. Boaretto, et al. “Decoupling Local Disorder and Optical Effects in Infrared Spectra: Differentiating Between Calcites with Different Origins”. Adv. Mater. 2011; 23(4): 550–554.

L. Regev, K.M. Poduska, L. Addadi, et al. “Distinguishing Between Calcites Formed by Different Mechanisms Using Infrared Spectrometry: Archaeological Applications”. J. Archaeolog. Sci. 2010; 37(12): 3022–3029.

Rintoul, L.

E. Wentrup-Byrne, L. Rintoul, J. Smith, et al. “Comparison of Vibrational Spectroscopic Techniques for the Characterization of Human Gallstones”. Appl. Spectrosc. 1995; 49(7): 1028–1036.

Rogova, O.B.

P.K. Krivoshein, D.S. Volkov, O.B. Rogova, et al. “FTIR Photoacoustic Spectroscopy for Identification and Assessment of Soil Components: Chernozems and their Size Fractions”. Photoacoustics. 2020; 18: 100162.

Rosencwaig, A.

A. Rosencwaig, A. Gersho. “Theory of the Photoacoustic Effect with Solids”. J. Appl. Phys. 1976; 47(1): 64–69.

A. Rosencwaig. Photoacoustics and Photoacoustic Spectroscopy., Hoboken: Wiley, 1980.

Shaw, J.

K. Michaelian, S. Oladepo, J. Shaw, et al. “Raman and Photoacoustic Infrared Spectra of Fluorene Derivatives: Experiment and Calculations”. Vib. Spectrosc. 2014; 74: 33–46.

Smith, J.

E. Wentrup-Byrne, L. Rintoul, J. Smith, et al. “Comparison of Vibrational Spectroscopic Techniques for the Characterization of Human Gallstones”. Appl. Spectrosc. 1995; 49(7): 1028–1036.

Sowa MG, M.G.

A. Pichler, M.G. Sowa MG. “Using the Linearization Approach for Synchronizing the Phase of Photoacoustic Reference and Sample data”. Appl. Spectrosc. 2004; 58(10): 1228–1235.

Thompson, M.M.

M.M. Thompson, R.A. Palmer. “In situ Fourier transform Infrared Diffuse Reflectance and Photoacoustic Spectroscopy Characterization of Sulfur-Oxygen Species Resulting from the Reaction of SO2 with CaCO3”. Appl. Spectrosc. 1988; 42(6): 945–951.

Toffolo, M.B.

M.B. Toffolo, E. Boaretto. “Nucleation of Aragonite Upon Carbonation of Calcium Oxide and Calcium Hydroxide at Ambient Temperatures and Pressures: A New Indicator of Fire-related Human Activities”. J. Archaeolog. Sci. 2014; 49: 237–248.

Valenzano, L.

L. Valenzano, Y. Noel, R. Orlando, et al. “Ab Initio Vibrational Spectra and Dielectric Properties of Carbonates: Magnesite, Calcite and Dolomite”. Theor. Chem. Acc. 2007; 117(5–6): 991–1000.

Vidavsky, N.

A. Gal, K. Kahil, N. Vidavsky, et al. “Particle Accretion Mechanism Underlies Biological Crystal Growth from an Amorphous Precursor Phase”. Adv. Funct. Mater. 2014; 24(34): 5420–5426.

Volkov, D.S.

P.K. Krivoshein, D.S. Volkov, O.B. Rogova, et al. “FTIR Photoacoustic Spectroscopy for Identification and Assessment of Soil Components: Chernozems and their Size Fractions”. Photoacoustics. 2020; 18: 100162.

Weiner, S.

S. Weiner. Microarchaeology: Beyond the Visible Archaeological Record., Cambridge, UK: Cambridge University Press, 2010.

Wen, Q.

K. Michaelian, Q. Wen, B. Billinghurst, et al. “Far-and Mid-Infrared Photoacoustic Spectra of Tetracene, Pentacene, Perylene and Pyrene”. Vib. Spectrosc. 2012; 58: 50–56.

Wentrup-Byrne, E.

E. Wentrup-Byrne, L. Rintoul, J. Smith, et al. “Comparison of Vibrational Spectroscopic Techniques for the Characterization of Human Gallstones”. Appl. Spectrosc. 1995; 49(7): 1028–1036.

Xu, B.

B. Xu, A. Hirsch, L. Kronik, et al. “Vibrational Properties of Isotopically Enriched Materials: The Case of Calcite”. RSC Adv. 2018; 8(59): 33985–33992.

Adv. Funct. Mater (1)

A. Gal, K. Kahil, N. Vidavsky, et al. “Particle Accretion Mechanism Underlies Biological Crystal Growth from an Amorphous Precursor Phase”. Adv. Funct. Mater. 2014; 24(34): 5420–5426.

Adv. Mater (1)

K.M. Poduska, L. Regev, E. Boaretto, et al. “Decoupling Local Disorder and Optical Effects in Infrared Spectra: Differentiating Between Calcites with Different Origins”. Adv. Mater. 2011; 23(4): 550–554.

Anal. Chem (1)

L. Burggraf, D. Leyden. “Quantitative Photoacoustic Spectroscopy of Intensely Light-scattering Thermally Thick Samples”. Anal. Chem. 1981; 53(6): 759–764.

Angew. Chem. Int. Ed (1)

R. Gueta, A. Natan, L. Addadi, et al. “Local Atomic Order and Infrared Spectra of Biogenic Calcite”. Angew. Chem. Int. Ed. 2007; 46(1–2): 291–294.

Appl. Spectrosc (5)

R. Carter III. “The Application of Linear PA/FT-IR to Polymer-related Problems”. Appl. Spectrosc. 1992; 46(2): 219–224.

A. Pichler, M.G. Sowa MG. “Using the Linearization Approach for Synchronizing the Phase of Photoacoustic Reference and Sample data”. Appl. Spectrosc. 2004; 58(10): 1228–1235.

M. Natale, L.N. Lewis. “Application of PAS for the Investigation of Overtones and Combinations in the Near IR”. Appl. Spectrosc. 1982; 36(4): 410–413.

M.M. Thompson, R.A. Palmer. “In situ Fourier transform Infrared Diffuse Reflectance and Photoacoustic Spectroscopy Characterization of Sulfur-Oxygen Species Resulting from the Reaction of SO2 with CaCO3”. Appl. Spectrosc. 1988; 42(6): 945–951.

E. Wentrup-Byrne, L. Rintoul, J. Smith, et al. “Comparison of Vibrational Spectroscopic Techniques for the Characterization of Human Gallstones”. Appl. Spectrosc. 1995; 49(7): 1028–1036.

Chem. Rev (1)

F.C. Meldrum, H. Cölfen H. “Controlling Mineral Morphologies and Structures in Biological and Synthetic Systems”. Chem. Rev. 2008; 108(11): 4332–4432.

J. Appl. Phys (1)

A. Rosencwaig, A. Gersho. “Theory of the Photoacoustic Effect with Solids”. J. Appl. Phys. 1976; 47(1): 64–69.

J. Archaeolog. Sci (2)

M.B. Toffolo, E. Boaretto. “Nucleation of Aragonite Upon Carbonation of Calcium Oxide and Calcium Hydroxide at Ambient Temperatures and Pressures: A New Indicator of Fire-related Human Activities”. J. Archaeolog. Sci. 2014; 49: 237–248.

L. Regev, K.M. Poduska, L. Addadi, et al. “Distinguishing Between Calcites Formed by Different Mechanisms Using Infrared Spectrometry: Archaeological Applications”. J. Archaeolog. Sci. 2010; 37(12): 3022–3029.

Miner. Eng (1)

G. Norton, J. McClelland. “Rapid Determination of Limestone Using Photoacoustic Spectroscopy”. Miner. Eng. 1997; 10(2): 237–240.

Minerals (1)

S. Campbell, K.M. Poduska. “Incorporating Far-Infrared Data into Carbonate Mineral Analyses”. Minerals. 2020; 10(7): 628.

Photoacoustics (1)

P.K. Krivoshein, D.S. Volkov, O.B. Rogova, et al. “FTIR Photoacoustic Spectroscopy for Identification and Assessment of Soil Components: Chernozems and their Size Fractions”. Photoacoustics. 2020; 18: 100162.

Rev. Adv. Mater. Sci (1)

N. Guskos, G. Papadopoulos, J. Majszczyk, et al. “Photoacoustic Response of Sea Urchin Tissue”. Rev. Adv. Mater. Sci. 2010; 23: 76–79.

Rev. Sci. Instrum (1)

O. Gómez, P. Quintana, D. Aguilar, et al. “Photothermal Characterization of Materials Biomineralized by Mollusks”. Rev. Sci. Instrum. 2003; 74(1): 750–754.

RSC Adv (1)

B. Xu, A. Hirsch, L. Kronik, et al. “Vibrational Properties of Isotopically Enriched Materials: The Case of Calcite”. RSC Adv. 2018; 8(59): 33985–33992.

Theor. Chem. Acc (1)

L. Valenzano, Y. Noel, R. Orlando, et al. “Ab Initio Vibrational Spectra and Dielectric Properties of Carbonates: Magnesite, Calcite and Dolomite”. Theor. Chem. Acc. 2007; 117(5–6): 991–1000.

Vib. Spectrosc (2)

K. Michaelian, Q. Wen, B. Billinghurst, et al. “Far-and Mid-Infrared Photoacoustic Spectra of Tetracene, Pentacene, Perylene and Pyrene”. Vib. Spectrosc. 2012; 58: 50–56.

K. Michaelian, S. Oladepo, J. Shaw, et al. “Raman and Photoacoustic Infrared Spectra of Fluorene Derivatives: Experiment and Calculations”. Vib. Spectrosc. 2014; 74: 33–46.

Other (4)

W.B. White. “The Carbonate Minerals”. In: V.C. Farmer, editor. The Infrared Spectra of Minerals. London: Mineralogical Society of Great Britain and Ireland, 1974. Pp. 227–284.

A. Rosencwaig. Photoacoustics and Photoacoustic Spectroscopy., Hoboken: Wiley, 1980.

K.H. Michaelian. Photoacoustic IR spectroscopy: Instrumentation, Applications and Data Analysis., Germany: Wiley-VCH, 2010.

S. Weiner. Microarchaeology: Beyond the Visible Archaeological Record., Cambridge, UK: Cambridge University Press, 2010.

Supplementary Material (1)

NameDescription
Supplement 1       sj-zip-1-asp-10.1177_00037028211009212 - Supplemental material for Photoacoustic Detection of Weak Absorption Bands in Infrared Spectra of Calcite

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.