Abstract

Presented here is a novel automated method for determining the trace element composition of bulk thorium by inductively coupled plasma–optical emission spectroscopy (ICP-OES). ICP-OES is a universal approach for measuring the trace elemental impurities present in actinide-rich materials; however, due to the emission rich spectrum of the actinide, a separation from the trace elements is warranted for spectrochemical analysis. Here, AG MP-1 ion exchange resin was utilized for retention of the Th matrix, while allowing the trace element impurities to be separated prior to subsequent analysis using ICP-OES. After demonstrating the separation on traditional gravity-driven columns, the methodology was transitioned to an automated platform for comparison. This automated platform utilizes syringe-driven sample and solvent flow and can collect the trace element and thorium fractions in separate locations. While reducing the sample size (500 µL, 1.5 mg of Th), maintaining the overall separation efficiency (recoveries >95%), and illustrating the sample throughput ability (n = 10+), this automated methodology could be readily adopted to nuclear facilities in which the determination of trace elemental impurities in Th samples is warranted.

© 2020 The Author(s)

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription