Abstract

We report the observation of photoluminescence emission from airborne gold, silver, and copper nanoparticles. A continuous wave 532 nm laser was employed for excitation. Photoluminescence from gold nanoparticles carried in a nitrogen gas flow was both spectrally resolved and directly imaged in situ using an intensified charge-coupled device camera. The simultaneously detected Raman signal from the nitrogen molecules enables quantitative estimation of the photoluminescence quantum yield of the gold nanoparticles. Photoluminescence from metal nanoparticles carried in a gas flow provides a potential tool for operando imaging of plasmonic metal nanoparticles in aerosol reactions.

© 2021 The Author(s)

PDF Article

References

  • View by:

  1. P. Zijlstra, M. Orrit. “Single Metal Nanoparticles: Optical Detection, Spectroscopy and Applications”. Rep. Prog. Phys. 2011; 74(10): 106401doi: 10.1088/0034-4885/74/10/106401.
  2. K.M. Mayer, J.H. Hafner. “Localized Surface Plasmon Resonance Sensors”. Chem. Rev. 2011; 111(6): 3828–3857. doi: 10.1021/cr100313v.
  3. J. Wallentin, N. Anttu, D. Asoli, M. Huffman, et al. “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit”. Science. 2013; 339(6123): 1057–1060. doi: 10.1126/science.1230969.
  4. K. Deppert, L. Samuelson. “Self-Limiting Transformation of Monodisperse Ga Droplets into GaAs Nanocrystals”. Appl. Phys. Lett. 1996; 68(10): 1409–1411. doi: 10.1063/1.116096.
  5. M. Heurlin, M.H. Magnusson, D. Lindgren, M. Ek, et al. “Continuous Gas-Phase Synthesis of Nanowires with Tunable Properties”. Nature. 2012; 492(7427): 90–94. doi: 10.1038/nature11652.
  6. M.H. Magnusson, B.J. Ohlsson, M.T. Björk, K.A. Dick, et al. “Semiconductor Nanostructures Enabled by Aerosol Technology”. Front. Phys. 2014; 9(3): 398–418. doi: 10.1007/s11467-013-0405-x.
  7. E. Dulkeith, T. Niedereichholz, T.A. Klar, J. Feldmann, et al. “Plasmon Emission in Photoexcited Gold Nanoparticles”. Phys. Rev. B. 2004; 70(20): 205424doi: 10.1103/PhysRevB.70.205424.
  8. A. Mooradian. “Photoluminescence of Metals”. Phys. Rev. Lett. 1969; 22(5): 185–187. doi: 10.1103/PhysRevLett.22.185.
  9. G.T. Boyd, Z.H. Yu, Y.R. Shen. “Photoinduced Luminescence from the Noble Metals and Its Enhancement on Roughened Surfaces”. Phys. Rev. B. 1986; 33(12): 7923–7936. doi: 10.1103/PhysRevB.33.7923.
  10. P. Apell, R. Monreal, S. Lundqvist. “Photoluminescence of Noble Metals”. Phys. Scr. 1988; 38(2): 174–179. doi: 10.1088/0031-8949/38/2/012.
  11. M.B. Mohamed, V. Volkov, S. Link, M.A. El-Sayed. “The ‘Lightning’ Gold Nanorods: Fluorescence Enhancement of Over a Million Compared to the Gold Metal”. Chem. Phys. Lett. 2000. 317(6): 517–523. doi: 10.1016/S0009-2614(99)01414-1.
  12. N.S. Tabrizi, M. Ullmann, V.A. Vons, U. Lafont, et al. “Generation of Nanoparticles by Spark Discharge”. J. Nanopart. Res. 2009; 11(2): 315–332. doi: 10.1007/s11051-008-9407-y.
  13. J. Feng, L. Huang, L. Ludvigsson, M.E. Messing, et al. “General Approach to the Evolution of Singlet Nanoparticles from a Rapidly Quenched Point Source”. J. Phys. Chem. C. 2016; 120(1): 621–630. doi: 10.1021/acs.jpcc.5b06503.
  14. A.C. Eckbreth. Laser Diagnostics for Combustion Temperature and Species. Cambridge, MA: Abacus Press, 1988.
  15. C.F. Bohren, D.R. Huffman. Absorption and Scattering of Light by Small Particles. Weinheim, Germany: Wiley, 1983.
  16. A. Gaiduk, M. Yorulmaz, M. Orrit. “Correlated Absorption and Photoluminescence of Single Gold Nanoparticles”. ChemPhysChem. 2011; 12(8): 1536–1541. doi: 10.1002/cphc.201100167.
  17. E.D. Palik. Handbook of Optical Constants of Solids. San Diego: Academic Press, 1997.
  18. P.B. Johnson, R.W. Christy. “Optical Constants of the Noble Metals”. Phys. Rev. B. 1972; 6(12): 4370–4379. doi: 10.1103/PhysRevB.6.4370.
  19. Y. Zhang, G. Xiong, S. Li, Z. Dong, et al. “Novel Low-Intensity Phase-Selective Laser-Induced Breakdown Spectroscopy of TiO2 Nanoparticle Aerosols During Flame Synthesis”. Combust. Flame. 2013; 160(3): 725–733. doi: 10.1016/j.combustflame.2012.11.007.
  20. R.L. Vander Wal, T.M. Ticich, J.R. West. “Laser-Induced Incandescence Applied to Metal Nanostructures”. Appl. Opt. 1999; 38(27): 5867doi: 10.1364/AO.38.005867.
  21. V.P. Carey, G. Chen, C. Grigoropoulos, M. Kaviany, et al. “A Review of Heat Transfer Physics”. Nanoscale Microscale Thermophys. Eng. 2008; 12(1): 1–60. doi: 10.1080/15567260801917520.
  22. S. Talebi-Moghaddam, S. Robinson-Enebeli, S. Musikhin, D.J. Clavel, et al. “Multiphoton Induced Photoluminescence During Time-Resolved Laser-Induced Incandescence Experiments on Silver and Gold Nanoparticles”. J. Appl. Phys. 2021; 129(18): 183107doi: 10.1063/5.0046702.
  23. K.-Q. Lin, J. Yi, J.-H. Zhong, S. Hu, et al. “Plasmonic Photoluminescence for Recovering Native Chemical Information from Surface-Enhanced Raman Scattering”. Nat. Commun. 2017; 8(1): 14891doi: 10.1038/ncomms14891.
  24. B. Neupane, L. Zhao, G. Wang. “Up-Conversion Luminescence of Gold Nanospheres when Excited at Nonsurface Plasmon Resonance Wavelength by a Continuous Wave Laser”. Nano Lett. 2013; 13(9): 4087–4092. doi: 10.1021/nl401505p.
  25. J.T. Hugall, J.J. Baumberg. “Demonstrating Photoluminescence from Au is Electronic Inelastic Light Scattering of a Plasmonic Metal: The Origin of SERS Backgrounds”. Nano Lett. 2015; 15(4): 2600–2604. doi: 10.1021/acs.nanolett.5b00146.
  26. J.R. Sambles. “An Electron Microscope Study of Evaporating Gold Particles: The Kelvin Equation for Liquid Gold and the Lowering of the Melting Point of Solid Gold Particles”. Proc. R. Soc. A. 1971; 324(1558): 339–351. doi: 10.1098/rspa.1971.0143.
  27. S. Inasawa, M. Sugiyama, Y. Yamaguchi. “Laser-Induced Shape Transformation of Gold Nanoparticles Below the Melting Point: The Effect of Surface Melting”. J. Phys. Chem. B. 2005; 109(8): 3104–3111. doi: 10.1021/jp045167j.
  28. H. Petrova, J. Perez Juste, I. Pastoriza-Santos, G.V. Hartland, et al. “On the Temperature Stability of Gold Nanorods: Comparison Between Thermal and Ultrafast Laser-Induced Heating”. Phys. Chem. Chem. Phys. 2006; 8(7): 814–821. doi: 10.1039/B514644E.
  29. J. Hernandez-Rueda, A. de Beurs, D. van Oosten. “Ultrafast Laser Ablation of Trapped Gold Nanoparticles”. Opt. Lett. 2019; 44(13): 3294–3297. doi: 10.1364/OL.44.003294.
  30. L. Jauffred, S. Mohammad-Reza Taheri, R. Schmitt, H. Linke, et al. “Optical Trapping of Gold Nanoparticles in Air”. Nano Lett. 2015; 15(7): 4713–4719. doi: 10.1021/acs.nanolett.5b01562.

2021 (1)

S. Talebi-Moghaddam, S. Robinson-Enebeli, S. Musikhin, D.J. Clavel, et al. “Multiphoton Induced Photoluminescence During Time-Resolved Laser-Induced Incandescence Experiments on Silver and Gold Nanoparticles”. J. Appl. Phys. 2021; 129(18): 183107doi: 10.1063/5.0046702.

2019 (1)

J. Hernandez-Rueda, A. de Beurs, D. van Oosten. “Ultrafast Laser Ablation of Trapped Gold Nanoparticles”. Opt. Lett. 2019; 44(13): 3294–3297. doi: 10.1364/OL.44.003294.

2017 (1)

K.-Q. Lin, J. Yi, J.-H. Zhong, S. Hu, et al. “Plasmonic Photoluminescence for Recovering Native Chemical Information from Surface-Enhanced Raman Scattering”. Nat. Commun. 2017; 8(1): 14891doi: 10.1038/ncomms14891.

2016 (1)

J. Feng, L. Huang, L. Ludvigsson, M.E. Messing, et al. “General Approach to the Evolution of Singlet Nanoparticles from a Rapidly Quenched Point Source”. J. Phys. Chem. C. 2016; 120(1): 621–630. doi: 10.1021/acs.jpcc.5b06503.

2015 (2)

L. Jauffred, S. Mohammad-Reza Taheri, R. Schmitt, H. Linke, et al. “Optical Trapping of Gold Nanoparticles in Air”. Nano Lett. 2015; 15(7): 4713–4719. doi: 10.1021/acs.nanolett.5b01562.

J.T. Hugall, J.J. Baumberg. “Demonstrating Photoluminescence from Au is Electronic Inelastic Light Scattering of a Plasmonic Metal: The Origin of SERS Backgrounds”. Nano Lett. 2015; 15(4): 2600–2604. doi: 10.1021/acs.nanolett.5b00146.

2014 (1)

M.H. Magnusson, B.J. Ohlsson, M.T. Björk, K.A. Dick, et al. “Semiconductor Nanostructures Enabled by Aerosol Technology”. Front. Phys. 2014; 9(3): 398–418. doi: 10.1007/s11467-013-0405-x.

2013 (3)

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, et al. “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit”. Science. 2013; 339(6123): 1057–1060. doi: 10.1126/science.1230969.

B. Neupane, L. Zhao, G. Wang. “Up-Conversion Luminescence of Gold Nanospheres when Excited at Nonsurface Plasmon Resonance Wavelength by a Continuous Wave Laser”. Nano Lett. 2013; 13(9): 4087–4092. doi: 10.1021/nl401505p.

Y. Zhang, G. Xiong, S. Li, Z. Dong, et al. “Novel Low-Intensity Phase-Selective Laser-Induced Breakdown Spectroscopy of TiO2 Nanoparticle Aerosols During Flame Synthesis”. Combust. Flame. 2013; 160(3): 725–733. doi: 10.1016/j.combustflame.2012.11.007.

2012 (1)

M. Heurlin, M.H. Magnusson, D. Lindgren, M. Ek, et al. “Continuous Gas-Phase Synthesis of Nanowires with Tunable Properties”. Nature. 2012; 492(7427): 90–94. doi: 10.1038/nature11652.

2011 (3)

P. Zijlstra, M. Orrit. “Single Metal Nanoparticles: Optical Detection, Spectroscopy and Applications”. Rep. Prog. Phys. 2011; 74(10): 106401doi: 10.1088/0034-4885/74/10/106401.

K.M. Mayer, J.H. Hafner. “Localized Surface Plasmon Resonance Sensors”. Chem. Rev. 2011; 111(6): 3828–3857. doi: 10.1021/cr100313v.

A. Gaiduk, M. Yorulmaz, M. Orrit. “Correlated Absorption and Photoluminescence of Single Gold Nanoparticles”. ChemPhysChem. 2011; 12(8): 1536–1541. doi: 10.1002/cphc.201100167.

2009 (1)

N.S. Tabrizi, M. Ullmann, V.A. Vons, U. Lafont, et al. “Generation of Nanoparticles by Spark Discharge”. J. Nanopart. Res. 2009; 11(2): 315–332. doi: 10.1007/s11051-008-9407-y.

2008 (1)

V.P. Carey, G. Chen, C. Grigoropoulos, M. Kaviany, et al. “A Review of Heat Transfer Physics”. Nanoscale Microscale Thermophys. Eng. 2008; 12(1): 1–60. doi: 10.1080/15567260801917520.

2006 (1)

H. Petrova, J. Perez Juste, I. Pastoriza-Santos, G.V. Hartland, et al. “On the Temperature Stability of Gold Nanorods: Comparison Between Thermal and Ultrafast Laser-Induced Heating”. Phys. Chem. Chem. Phys. 2006; 8(7): 814–821. doi: 10.1039/B514644E.

2005 (1)

S. Inasawa, M. Sugiyama, Y. Yamaguchi. “Laser-Induced Shape Transformation of Gold Nanoparticles Below the Melting Point: The Effect of Surface Melting”. J. Phys. Chem. B. 2005; 109(8): 3104–3111. doi: 10.1021/jp045167j.

2004 (1)

E. Dulkeith, T. Niedereichholz, T.A. Klar, J. Feldmann, et al. “Plasmon Emission in Photoexcited Gold Nanoparticles”. Phys. Rev. B. 2004; 70(20): 205424doi: 10.1103/PhysRevB.70.205424.

1999 (1)

R.L. Vander Wal, T.M. Ticich, J.R. West. “Laser-Induced Incandescence Applied to Metal Nanostructures”. Appl. Opt. 1999; 38(27): 5867doi: 10.1364/AO.38.005867.

1996 (1)

K. Deppert, L. Samuelson. “Self-Limiting Transformation of Monodisperse Ga Droplets into GaAs Nanocrystals”. Appl. Phys. Lett. 1996; 68(10): 1409–1411. doi: 10.1063/1.116096.

1988 (1)

P. Apell, R. Monreal, S. Lundqvist. “Photoluminescence of Noble Metals”. Phys. Scr. 1988; 38(2): 174–179. doi: 10.1088/0031-8949/38/2/012.

1986 (1)

G.T. Boyd, Z.H. Yu, Y.R. Shen. “Photoinduced Luminescence from the Noble Metals and Its Enhancement on Roughened Surfaces”. Phys. Rev. B. 1986; 33(12): 7923–7936. doi: 10.1103/PhysRevB.33.7923.

1972 (1)

P.B. Johnson, R.W. Christy. “Optical Constants of the Noble Metals”. Phys. Rev. B. 1972; 6(12): 4370–4379. doi: 10.1103/PhysRevB.6.4370.

1971 (1)

J.R. Sambles. “An Electron Microscope Study of Evaporating Gold Particles: The Kelvin Equation for Liquid Gold and the Lowering of the Melting Point of Solid Gold Particles”. Proc. R. Soc. A. 1971; 324(1558): 339–351. doi: 10.1098/rspa.1971.0143.

1969 (1)

A. Mooradian. “Photoluminescence of Metals”. Phys. Rev. Lett. 1969; 22(5): 185–187. doi: 10.1103/PhysRevLett.22.185.

Anttu, N.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, et al. “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit”. Science. 2013; 339(6123): 1057–1060. doi: 10.1126/science.1230969.

Apell, P.

P. Apell, R. Monreal, S. Lundqvist. “Photoluminescence of Noble Metals”. Phys. Scr. 1988; 38(2): 174–179. doi: 10.1088/0031-8949/38/2/012.

Asoli, D.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, et al. “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit”. Science. 2013; 339(6123): 1057–1060. doi: 10.1126/science.1230969.

Baumberg, J.J.

J.T. Hugall, J.J. Baumberg. “Demonstrating Photoluminescence from Au is Electronic Inelastic Light Scattering of a Plasmonic Metal: The Origin of SERS Backgrounds”. Nano Lett. 2015; 15(4): 2600–2604. doi: 10.1021/acs.nanolett.5b00146.

Björk, M.T.

M.H. Magnusson, B.J. Ohlsson, M.T. Björk, K.A. Dick, et al. “Semiconductor Nanostructures Enabled by Aerosol Technology”. Front. Phys. 2014; 9(3): 398–418. doi: 10.1007/s11467-013-0405-x.

Boyd, G.T.

G.T. Boyd, Z.H. Yu, Y.R. Shen. “Photoinduced Luminescence from the Noble Metals and Its Enhancement on Roughened Surfaces”. Phys. Rev. B. 1986; 33(12): 7923–7936. doi: 10.1103/PhysRevB.33.7923.

Carey, V.P.

V.P. Carey, G. Chen, C. Grigoropoulos, M. Kaviany, et al. “A Review of Heat Transfer Physics”. Nanoscale Microscale Thermophys. Eng. 2008; 12(1): 1–60. doi: 10.1080/15567260801917520.

Chen, G.

V.P. Carey, G. Chen, C. Grigoropoulos, M. Kaviany, et al. “A Review of Heat Transfer Physics”. Nanoscale Microscale Thermophys. Eng. 2008; 12(1): 1–60. doi: 10.1080/15567260801917520.

Christy, R.W.

P.B. Johnson, R.W. Christy. “Optical Constants of the Noble Metals”. Phys. Rev. B. 1972; 6(12): 4370–4379. doi: 10.1103/PhysRevB.6.4370.

Clavel, D.J.

S. Talebi-Moghaddam, S. Robinson-Enebeli, S. Musikhin, D.J. Clavel, et al. “Multiphoton Induced Photoluminescence During Time-Resolved Laser-Induced Incandescence Experiments on Silver and Gold Nanoparticles”. J. Appl. Phys. 2021; 129(18): 183107doi: 10.1063/5.0046702.

de Beurs, A.

J. Hernandez-Rueda, A. de Beurs, D. van Oosten. “Ultrafast Laser Ablation of Trapped Gold Nanoparticles”. Opt. Lett. 2019; 44(13): 3294–3297. doi: 10.1364/OL.44.003294.

Deppert, K.

K. Deppert, L. Samuelson. “Self-Limiting Transformation of Monodisperse Ga Droplets into GaAs Nanocrystals”. Appl. Phys. Lett. 1996; 68(10): 1409–1411. doi: 10.1063/1.116096.

Dick, K.A.

M.H. Magnusson, B.J. Ohlsson, M.T. Björk, K.A. Dick, et al. “Semiconductor Nanostructures Enabled by Aerosol Technology”. Front. Phys. 2014; 9(3): 398–418. doi: 10.1007/s11467-013-0405-x.

Dong, Z.

Y. Zhang, G. Xiong, S. Li, Z. Dong, et al. “Novel Low-Intensity Phase-Selective Laser-Induced Breakdown Spectroscopy of TiO2 Nanoparticle Aerosols During Flame Synthesis”. Combust. Flame. 2013; 160(3): 725–733. doi: 10.1016/j.combustflame.2012.11.007.

Dulkeith, E.

E. Dulkeith, T. Niedereichholz, T.A. Klar, J. Feldmann, et al. “Plasmon Emission in Photoexcited Gold Nanoparticles”. Phys. Rev. B. 2004; 70(20): 205424doi: 10.1103/PhysRevB.70.205424.

Ek, M.

M. Heurlin, M.H. Magnusson, D. Lindgren, M. Ek, et al. “Continuous Gas-Phase Synthesis of Nanowires with Tunable Properties”. Nature. 2012; 492(7427): 90–94. doi: 10.1038/nature11652.

Feldmann, J.

E. Dulkeith, T. Niedereichholz, T.A. Klar, J. Feldmann, et al. “Plasmon Emission in Photoexcited Gold Nanoparticles”. Phys. Rev. B. 2004; 70(20): 205424doi: 10.1103/PhysRevB.70.205424.

Feng, J.

J. Feng, L. Huang, L. Ludvigsson, M.E. Messing, et al. “General Approach to the Evolution of Singlet Nanoparticles from a Rapidly Quenched Point Source”. J. Phys. Chem. C. 2016; 120(1): 621–630. doi: 10.1021/acs.jpcc.5b06503.

Gaiduk, A.

A. Gaiduk, M. Yorulmaz, M. Orrit. “Correlated Absorption and Photoluminescence of Single Gold Nanoparticles”. ChemPhysChem. 2011; 12(8): 1536–1541. doi: 10.1002/cphc.201100167.

Grigoropoulos, C.

V.P. Carey, G. Chen, C. Grigoropoulos, M. Kaviany, et al. “A Review of Heat Transfer Physics”. Nanoscale Microscale Thermophys. Eng. 2008; 12(1): 1–60. doi: 10.1080/15567260801917520.

Hafner, J.H.

K.M. Mayer, J.H. Hafner. “Localized Surface Plasmon Resonance Sensors”. Chem. Rev. 2011; 111(6): 3828–3857. doi: 10.1021/cr100313v.

Hartland, G.V.

H. Petrova, J. Perez Juste, I. Pastoriza-Santos, G.V. Hartland, et al. “On the Temperature Stability of Gold Nanorods: Comparison Between Thermal and Ultrafast Laser-Induced Heating”. Phys. Chem. Chem. Phys. 2006; 8(7): 814–821. doi: 10.1039/B514644E.

Hernandez-Rueda, J.

J. Hernandez-Rueda, A. de Beurs, D. van Oosten. “Ultrafast Laser Ablation of Trapped Gold Nanoparticles”. Opt. Lett. 2019; 44(13): 3294–3297. doi: 10.1364/OL.44.003294.

Heurlin, M.

M. Heurlin, M.H. Magnusson, D. Lindgren, M. Ek, et al. “Continuous Gas-Phase Synthesis of Nanowires with Tunable Properties”. Nature. 2012; 492(7427): 90–94. doi: 10.1038/nature11652.

Hu, S.

K.-Q. Lin, J. Yi, J.-H. Zhong, S. Hu, et al. “Plasmonic Photoluminescence for Recovering Native Chemical Information from Surface-Enhanced Raman Scattering”. Nat. Commun. 2017; 8(1): 14891doi: 10.1038/ncomms14891.

Huang, L.

J. Feng, L. Huang, L. Ludvigsson, M.E. Messing, et al. “General Approach to the Evolution of Singlet Nanoparticles from a Rapidly Quenched Point Source”. J. Phys. Chem. C. 2016; 120(1): 621–630. doi: 10.1021/acs.jpcc.5b06503.

Huffman, M.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, et al. “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit”. Science. 2013; 339(6123): 1057–1060. doi: 10.1126/science.1230969.

Hugall, J.T.

J.T. Hugall, J.J. Baumberg. “Demonstrating Photoluminescence from Au is Electronic Inelastic Light Scattering of a Plasmonic Metal: The Origin of SERS Backgrounds”. Nano Lett. 2015; 15(4): 2600–2604. doi: 10.1021/acs.nanolett.5b00146.

Inasawa, S.

S. Inasawa, M. Sugiyama, Y. Yamaguchi. “Laser-Induced Shape Transformation of Gold Nanoparticles Below the Melting Point: The Effect of Surface Melting”. J. Phys. Chem. B. 2005; 109(8): 3104–3111. doi: 10.1021/jp045167j.

Jauffred, L.

L. Jauffred, S. Mohammad-Reza Taheri, R. Schmitt, H. Linke, et al. “Optical Trapping of Gold Nanoparticles in Air”. Nano Lett. 2015; 15(7): 4713–4719. doi: 10.1021/acs.nanolett.5b01562.

Johnson, P.B.

P.B. Johnson, R.W. Christy. “Optical Constants of the Noble Metals”. Phys. Rev. B. 1972; 6(12): 4370–4379. doi: 10.1103/PhysRevB.6.4370.

Kaviany, M.

V.P. Carey, G. Chen, C. Grigoropoulos, M. Kaviany, et al. “A Review of Heat Transfer Physics”. Nanoscale Microscale Thermophys. Eng. 2008; 12(1): 1–60. doi: 10.1080/15567260801917520.

Klar, T.A.

E. Dulkeith, T. Niedereichholz, T.A. Klar, J. Feldmann, et al. “Plasmon Emission in Photoexcited Gold Nanoparticles”. Phys. Rev. B. 2004; 70(20): 205424doi: 10.1103/PhysRevB.70.205424.

Lafont, U.

N.S. Tabrizi, M. Ullmann, V.A. Vons, U. Lafont, et al. “Generation of Nanoparticles by Spark Discharge”. J. Nanopart. Res. 2009; 11(2): 315–332. doi: 10.1007/s11051-008-9407-y.

Li, S.

Y. Zhang, G. Xiong, S. Li, Z. Dong, et al. “Novel Low-Intensity Phase-Selective Laser-Induced Breakdown Spectroscopy of TiO2 Nanoparticle Aerosols During Flame Synthesis”. Combust. Flame. 2013; 160(3): 725–733. doi: 10.1016/j.combustflame.2012.11.007.

Lin, K.-Q.

K.-Q. Lin, J. Yi, J.-H. Zhong, S. Hu, et al. “Plasmonic Photoluminescence for Recovering Native Chemical Information from Surface-Enhanced Raman Scattering”. Nat. Commun. 2017; 8(1): 14891doi: 10.1038/ncomms14891.

Lindgren, D.

M. Heurlin, M.H. Magnusson, D. Lindgren, M. Ek, et al. “Continuous Gas-Phase Synthesis of Nanowires with Tunable Properties”. Nature. 2012; 492(7427): 90–94. doi: 10.1038/nature11652.

Linke, H.

L. Jauffred, S. Mohammad-Reza Taheri, R. Schmitt, H. Linke, et al. “Optical Trapping of Gold Nanoparticles in Air”. Nano Lett. 2015; 15(7): 4713–4719. doi: 10.1021/acs.nanolett.5b01562.

Ludvigsson, L.

J. Feng, L. Huang, L. Ludvigsson, M.E. Messing, et al. “General Approach to the Evolution of Singlet Nanoparticles from a Rapidly Quenched Point Source”. J. Phys. Chem. C. 2016; 120(1): 621–630. doi: 10.1021/acs.jpcc.5b06503.

Lundqvist, S.

P. Apell, R. Monreal, S. Lundqvist. “Photoluminescence of Noble Metals”. Phys. Scr. 1988; 38(2): 174–179. doi: 10.1088/0031-8949/38/2/012.

Magnusson, M.H.

M.H. Magnusson, B.J. Ohlsson, M.T. Björk, K.A. Dick, et al. “Semiconductor Nanostructures Enabled by Aerosol Technology”. Front. Phys. 2014; 9(3): 398–418. doi: 10.1007/s11467-013-0405-x.

M. Heurlin, M.H. Magnusson, D. Lindgren, M. Ek, et al. “Continuous Gas-Phase Synthesis of Nanowires with Tunable Properties”. Nature. 2012; 492(7427): 90–94. doi: 10.1038/nature11652.

Mayer, K.M.

K.M. Mayer, J.H. Hafner. “Localized Surface Plasmon Resonance Sensors”. Chem. Rev. 2011; 111(6): 3828–3857. doi: 10.1021/cr100313v.

Messing, M.E.

J. Feng, L. Huang, L. Ludvigsson, M.E. Messing, et al. “General Approach to the Evolution of Singlet Nanoparticles from a Rapidly Quenched Point Source”. J. Phys. Chem. C. 2016; 120(1): 621–630. doi: 10.1021/acs.jpcc.5b06503.

Mohammad-Reza Taheri, S.

L. Jauffred, S. Mohammad-Reza Taheri, R. Schmitt, H. Linke, et al. “Optical Trapping of Gold Nanoparticles in Air”. Nano Lett. 2015; 15(7): 4713–4719. doi: 10.1021/acs.nanolett.5b01562.

Monreal, R.

P. Apell, R. Monreal, S. Lundqvist. “Photoluminescence of Noble Metals”. Phys. Scr. 1988; 38(2): 174–179. doi: 10.1088/0031-8949/38/2/012.

Mooradian, A.

A. Mooradian. “Photoluminescence of Metals”. Phys. Rev. Lett. 1969; 22(5): 185–187. doi: 10.1103/PhysRevLett.22.185.

Musikhin, S.

S. Talebi-Moghaddam, S. Robinson-Enebeli, S. Musikhin, D.J. Clavel, et al. “Multiphoton Induced Photoluminescence During Time-Resolved Laser-Induced Incandescence Experiments on Silver and Gold Nanoparticles”. J. Appl. Phys. 2021; 129(18): 183107doi: 10.1063/5.0046702.

Neupane, B.

B. Neupane, L. Zhao, G. Wang. “Up-Conversion Luminescence of Gold Nanospheres when Excited at Nonsurface Plasmon Resonance Wavelength by a Continuous Wave Laser”. Nano Lett. 2013; 13(9): 4087–4092. doi: 10.1021/nl401505p.

Niedereichholz, T.

E. Dulkeith, T. Niedereichholz, T.A. Klar, J. Feldmann, et al. “Plasmon Emission in Photoexcited Gold Nanoparticles”. Phys. Rev. B. 2004; 70(20): 205424doi: 10.1103/PhysRevB.70.205424.

Ohlsson, B.J.

M.H. Magnusson, B.J. Ohlsson, M.T. Björk, K.A. Dick, et al. “Semiconductor Nanostructures Enabled by Aerosol Technology”. Front. Phys. 2014; 9(3): 398–418. doi: 10.1007/s11467-013-0405-x.

Orrit, M.

P. Zijlstra, M. Orrit. “Single Metal Nanoparticles: Optical Detection, Spectroscopy and Applications”. Rep. Prog. Phys. 2011; 74(10): 106401doi: 10.1088/0034-4885/74/10/106401.

A. Gaiduk, M. Yorulmaz, M. Orrit. “Correlated Absorption and Photoluminescence of Single Gold Nanoparticles”. ChemPhysChem. 2011; 12(8): 1536–1541. doi: 10.1002/cphc.201100167.

Pastoriza-Santos, I.

H. Petrova, J. Perez Juste, I. Pastoriza-Santos, G.V. Hartland, et al. “On the Temperature Stability of Gold Nanorods: Comparison Between Thermal and Ultrafast Laser-Induced Heating”. Phys. Chem. Chem. Phys. 2006; 8(7): 814–821. doi: 10.1039/B514644E.

Perez Juste, J.

H. Petrova, J. Perez Juste, I. Pastoriza-Santos, G.V. Hartland, et al. “On the Temperature Stability of Gold Nanorods: Comparison Between Thermal and Ultrafast Laser-Induced Heating”. Phys. Chem. Chem. Phys. 2006; 8(7): 814–821. doi: 10.1039/B514644E.

Petrova, H.

H. Petrova, J. Perez Juste, I. Pastoriza-Santos, G.V. Hartland, et al. “On the Temperature Stability of Gold Nanorods: Comparison Between Thermal and Ultrafast Laser-Induced Heating”. Phys. Chem. Chem. Phys. 2006; 8(7): 814–821. doi: 10.1039/B514644E.

Robinson-Enebeli, S.

S. Talebi-Moghaddam, S. Robinson-Enebeli, S. Musikhin, D.J. Clavel, et al. “Multiphoton Induced Photoluminescence During Time-Resolved Laser-Induced Incandescence Experiments on Silver and Gold Nanoparticles”. J. Appl. Phys. 2021; 129(18): 183107doi: 10.1063/5.0046702.

Sambles, J.R.

J.R. Sambles. “An Electron Microscope Study of Evaporating Gold Particles: The Kelvin Equation for Liquid Gold and the Lowering of the Melting Point of Solid Gold Particles”. Proc. R. Soc. A. 1971; 324(1558): 339–351. doi: 10.1098/rspa.1971.0143.

Samuelson, L.

K. Deppert, L. Samuelson. “Self-Limiting Transformation of Monodisperse Ga Droplets into GaAs Nanocrystals”. Appl. Phys. Lett. 1996; 68(10): 1409–1411. doi: 10.1063/1.116096.

Schmitt, R.

L. Jauffred, S. Mohammad-Reza Taheri, R. Schmitt, H. Linke, et al. “Optical Trapping of Gold Nanoparticles in Air”. Nano Lett. 2015; 15(7): 4713–4719. doi: 10.1021/acs.nanolett.5b01562.

Shen, Y.R.

G.T. Boyd, Z.H. Yu, Y.R. Shen. “Photoinduced Luminescence from the Noble Metals and Its Enhancement on Roughened Surfaces”. Phys. Rev. B. 1986; 33(12): 7923–7936. doi: 10.1103/PhysRevB.33.7923.

Sugiyama, M.

S. Inasawa, M. Sugiyama, Y. Yamaguchi. “Laser-Induced Shape Transformation of Gold Nanoparticles Below the Melting Point: The Effect of Surface Melting”. J. Phys. Chem. B. 2005; 109(8): 3104–3111. doi: 10.1021/jp045167j.

Tabrizi, N.S.

N.S. Tabrizi, M. Ullmann, V.A. Vons, U. Lafont, et al. “Generation of Nanoparticles by Spark Discharge”. J. Nanopart. Res. 2009; 11(2): 315–332. doi: 10.1007/s11051-008-9407-y.

Talebi-Moghaddam, S.

S. Talebi-Moghaddam, S. Robinson-Enebeli, S. Musikhin, D.J. Clavel, et al. “Multiphoton Induced Photoluminescence During Time-Resolved Laser-Induced Incandescence Experiments on Silver and Gold Nanoparticles”. J. Appl. Phys. 2021; 129(18): 183107doi: 10.1063/5.0046702.

Ticich, T.M.

R.L. Vander Wal, T.M. Ticich, J.R. West. “Laser-Induced Incandescence Applied to Metal Nanostructures”. Appl. Opt. 1999; 38(27): 5867doi: 10.1364/AO.38.005867.

Ullmann, M.

N.S. Tabrizi, M. Ullmann, V.A. Vons, U. Lafont, et al. “Generation of Nanoparticles by Spark Discharge”. J. Nanopart. Res. 2009; 11(2): 315–332. doi: 10.1007/s11051-008-9407-y.

van Oosten, D.

J. Hernandez-Rueda, A. de Beurs, D. van Oosten. “Ultrafast Laser Ablation of Trapped Gold Nanoparticles”. Opt. Lett. 2019; 44(13): 3294–3297. doi: 10.1364/OL.44.003294.

Vander Wal, R.L.

R.L. Vander Wal, T.M. Ticich, J.R. West. “Laser-Induced Incandescence Applied to Metal Nanostructures”. Appl. Opt. 1999; 38(27): 5867doi: 10.1364/AO.38.005867.

Vons, V.A.

N.S. Tabrizi, M. Ullmann, V.A. Vons, U. Lafont, et al. “Generation of Nanoparticles by Spark Discharge”. J. Nanopart. Res. 2009; 11(2): 315–332. doi: 10.1007/s11051-008-9407-y.

Wallentin, J.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, et al. “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit”. Science. 2013; 339(6123): 1057–1060. doi: 10.1126/science.1230969.

Wang, G.

B. Neupane, L. Zhao, G. Wang. “Up-Conversion Luminescence of Gold Nanospheres when Excited at Nonsurface Plasmon Resonance Wavelength by a Continuous Wave Laser”. Nano Lett. 2013; 13(9): 4087–4092. doi: 10.1021/nl401505p.

West, J.R.

R.L. Vander Wal, T.M. Ticich, J.R. West. “Laser-Induced Incandescence Applied to Metal Nanostructures”. Appl. Opt. 1999; 38(27): 5867doi: 10.1364/AO.38.005867.

Xiong, G.

Y. Zhang, G. Xiong, S. Li, Z. Dong, et al. “Novel Low-Intensity Phase-Selective Laser-Induced Breakdown Spectroscopy of TiO2 Nanoparticle Aerosols During Flame Synthesis”. Combust. Flame. 2013; 160(3): 725–733. doi: 10.1016/j.combustflame.2012.11.007.

Yamaguchi, Y.

S. Inasawa, M. Sugiyama, Y. Yamaguchi. “Laser-Induced Shape Transformation of Gold Nanoparticles Below the Melting Point: The Effect of Surface Melting”. J. Phys. Chem. B. 2005; 109(8): 3104–3111. doi: 10.1021/jp045167j.

Yi, J.

K.-Q. Lin, J. Yi, J.-H. Zhong, S. Hu, et al. “Plasmonic Photoluminescence for Recovering Native Chemical Information from Surface-Enhanced Raman Scattering”. Nat. Commun. 2017; 8(1): 14891doi: 10.1038/ncomms14891.

Yorulmaz, M.

A. Gaiduk, M. Yorulmaz, M. Orrit. “Correlated Absorption and Photoluminescence of Single Gold Nanoparticles”. ChemPhysChem. 2011; 12(8): 1536–1541. doi: 10.1002/cphc.201100167.

Yu, Z.H.

G.T. Boyd, Z.H. Yu, Y.R. Shen. “Photoinduced Luminescence from the Noble Metals and Its Enhancement on Roughened Surfaces”. Phys. Rev. B. 1986; 33(12): 7923–7936. doi: 10.1103/PhysRevB.33.7923.

Zhang, Y.

Y. Zhang, G. Xiong, S. Li, Z. Dong, et al. “Novel Low-Intensity Phase-Selective Laser-Induced Breakdown Spectroscopy of TiO2 Nanoparticle Aerosols During Flame Synthesis”. Combust. Flame. 2013; 160(3): 725–733. doi: 10.1016/j.combustflame.2012.11.007.

Zhao, L.

B. Neupane, L. Zhao, G. Wang. “Up-Conversion Luminescence of Gold Nanospheres when Excited at Nonsurface Plasmon Resonance Wavelength by a Continuous Wave Laser”. Nano Lett. 2013; 13(9): 4087–4092. doi: 10.1021/nl401505p.

Zhong, J.-H.

K.-Q. Lin, J. Yi, J.-H. Zhong, S. Hu, et al. “Plasmonic Photoluminescence for Recovering Native Chemical Information from Surface-Enhanced Raman Scattering”. Nat. Commun. 2017; 8(1): 14891doi: 10.1038/ncomms14891.

Zijlstra, P.

P. Zijlstra, M. Orrit. “Single Metal Nanoparticles: Optical Detection, Spectroscopy and Applications”. Rep. Prog. Phys. 2011; 74(10): 106401doi: 10.1088/0034-4885/74/10/106401.

Appl. Opt (1)

R.L. Vander Wal, T.M. Ticich, J.R. West. “Laser-Induced Incandescence Applied to Metal Nanostructures”. Appl. Opt. 1999; 38(27): 5867doi: 10.1364/AO.38.005867.

Appl. Phys. Lett (1)

K. Deppert, L. Samuelson. “Self-Limiting Transformation of Monodisperse Ga Droplets into GaAs Nanocrystals”. Appl. Phys. Lett. 1996; 68(10): 1409–1411. doi: 10.1063/1.116096.

Chem. Rev (1)

K.M. Mayer, J.H. Hafner. “Localized Surface Plasmon Resonance Sensors”. Chem. Rev. 2011; 111(6): 3828–3857. doi: 10.1021/cr100313v.

ChemPhysChem (1)

A. Gaiduk, M. Yorulmaz, M. Orrit. “Correlated Absorption and Photoluminescence of Single Gold Nanoparticles”. ChemPhysChem. 2011; 12(8): 1536–1541. doi: 10.1002/cphc.201100167.

Combust. Flame (1)

Y. Zhang, G. Xiong, S. Li, Z. Dong, et al. “Novel Low-Intensity Phase-Selective Laser-Induced Breakdown Spectroscopy of TiO2 Nanoparticle Aerosols During Flame Synthesis”. Combust. Flame. 2013; 160(3): 725–733. doi: 10.1016/j.combustflame.2012.11.007.

Front. Phys (1)

M.H. Magnusson, B.J. Ohlsson, M.T. Björk, K.A. Dick, et al. “Semiconductor Nanostructures Enabled by Aerosol Technology”. Front. Phys. 2014; 9(3): 398–418. doi: 10.1007/s11467-013-0405-x.

J. Appl. Phys (1)

S. Talebi-Moghaddam, S. Robinson-Enebeli, S. Musikhin, D.J. Clavel, et al. “Multiphoton Induced Photoluminescence During Time-Resolved Laser-Induced Incandescence Experiments on Silver and Gold Nanoparticles”. J. Appl. Phys. 2021; 129(18): 183107doi: 10.1063/5.0046702.

J. Nanopart. Res (1)

N.S. Tabrizi, M. Ullmann, V.A. Vons, U. Lafont, et al. “Generation of Nanoparticles by Spark Discharge”. J. Nanopart. Res. 2009; 11(2): 315–332. doi: 10.1007/s11051-008-9407-y.

J. Phys. Chem. B (1)

S. Inasawa, M. Sugiyama, Y. Yamaguchi. “Laser-Induced Shape Transformation of Gold Nanoparticles Below the Melting Point: The Effect of Surface Melting”. J. Phys. Chem. B. 2005; 109(8): 3104–3111. doi: 10.1021/jp045167j.

J. Phys. Chem. C (1)

J. Feng, L. Huang, L. Ludvigsson, M.E. Messing, et al. “General Approach to the Evolution of Singlet Nanoparticles from a Rapidly Quenched Point Source”. J. Phys. Chem. C. 2016; 120(1): 621–630. doi: 10.1021/acs.jpcc.5b06503.

Nano Lett (3)

B. Neupane, L. Zhao, G. Wang. “Up-Conversion Luminescence of Gold Nanospheres when Excited at Nonsurface Plasmon Resonance Wavelength by a Continuous Wave Laser”. Nano Lett. 2013; 13(9): 4087–4092. doi: 10.1021/nl401505p.

J.T. Hugall, J.J. Baumberg. “Demonstrating Photoluminescence from Au is Electronic Inelastic Light Scattering of a Plasmonic Metal: The Origin of SERS Backgrounds”. Nano Lett. 2015; 15(4): 2600–2604. doi: 10.1021/acs.nanolett.5b00146.

L. Jauffred, S. Mohammad-Reza Taheri, R. Schmitt, H. Linke, et al. “Optical Trapping of Gold Nanoparticles in Air”. Nano Lett. 2015; 15(7): 4713–4719. doi: 10.1021/acs.nanolett.5b01562.

Nanoscale Microscale Thermophys. Eng (1)

V.P. Carey, G. Chen, C. Grigoropoulos, M. Kaviany, et al. “A Review of Heat Transfer Physics”. Nanoscale Microscale Thermophys. Eng. 2008; 12(1): 1–60. doi: 10.1080/15567260801917520.

Nat. Commun (1)

K.-Q. Lin, J. Yi, J.-H. Zhong, S. Hu, et al. “Plasmonic Photoluminescence for Recovering Native Chemical Information from Surface-Enhanced Raman Scattering”. Nat. Commun. 2017; 8(1): 14891doi: 10.1038/ncomms14891.

Nature (1)

M. Heurlin, M.H. Magnusson, D. Lindgren, M. Ek, et al. “Continuous Gas-Phase Synthesis of Nanowires with Tunable Properties”. Nature. 2012; 492(7427): 90–94. doi: 10.1038/nature11652.

Opt. Lett (1)

J. Hernandez-Rueda, A. de Beurs, D. van Oosten. “Ultrafast Laser Ablation of Trapped Gold Nanoparticles”. Opt. Lett. 2019; 44(13): 3294–3297. doi: 10.1364/OL.44.003294.

Phys. Chem. Chem. Phys (1)

H. Petrova, J. Perez Juste, I. Pastoriza-Santos, G.V. Hartland, et al. “On the Temperature Stability of Gold Nanorods: Comparison Between Thermal and Ultrafast Laser-Induced Heating”. Phys. Chem. Chem. Phys. 2006; 8(7): 814–821. doi: 10.1039/B514644E.

Phys. Rev. B (3)

E. Dulkeith, T. Niedereichholz, T.A. Klar, J. Feldmann, et al. “Plasmon Emission in Photoexcited Gold Nanoparticles”. Phys. Rev. B. 2004; 70(20): 205424doi: 10.1103/PhysRevB.70.205424.

G.T. Boyd, Z.H. Yu, Y.R. Shen. “Photoinduced Luminescence from the Noble Metals and Its Enhancement on Roughened Surfaces”. Phys. Rev. B. 1986; 33(12): 7923–7936. doi: 10.1103/PhysRevB.33.7923.

P.B. Johnson, R.W. Christy. “Optical Constants of the Noble Metals”. Phys. Rev. B. 1972; 6(12): 4370–4379. doi: 10.1103/PhysRevB.6.4370.

Phys. Rev. Lett (1)

A. Mooradian. “Photoluminescence of Metals”. Phys. Rev. Lett. 1969; 22(5): 185–187. doi: 10.1103/PhysRevLett.22.185.

Phys. Scr (1)

P. Apell, R. Monreal, S. Lundqvist. “Photoluminescence of Noble Metals”. Phys. Scr. 1988; 38(2): 174–179. doi: 10.1088/0031-8949/38/2/012.

Proc. R. Soc. A (1)

J.R. Sambles. “An Electron Microscope Study of Evaporating Gold Particles: The Kelvin Equation for Liquid Gold and the Lowering of the Melting Point of Solid Gold Particles”. Proc. R. Soc. A. 1971; 324(1558): 339–351. doi: 10.1098/rspa.1971.0143.

Rep. Prog. Phys (1)

P. Zijlstra, M. Orrit. “Single Metal Nanoparticles: Optical Detection, Spectroscopy and Applications”. Rep. Prog. Phys. 2011; 74(10): 106401doi: 10.1088/0034-4885/74/10/106401.

Science (1)

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, et al. “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit”. Science. 2013; 339(6123): 1057–1060. doi: 10.1126/science.1230969.

Other (4)

M.B. Mohamed, V. Volkov, S. Link, M.A. El-Sayed. “The ‘Lightning’ Gold Nanorods: Fluorescence Enhancement of Over a Million Compared to the Gold Metal”. Chem. Phys. Lett. 2000. 317(6): 517–523. doi: 10.1016/S0009-2614(99)01414-1.

E.D. Palik. Handbook of Optical Constants of Solids. San Diego: Academic Press, 1997.

A.C. Eckbreth. Laser Diagnostics for Combustion Temperature and Species. Cambridge, MA: Abacus Press, 1988.

C.F. Bohren, D.R. Huffman. Absorption and Scattering of Light by Small Particles. Weinheim, Germany: Wiley, 1983.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.