Abstract

Raman spectroscopy is a promising tool for combustion processes optimization, due to the possibility of rapid determination of the exhaust gases composition. An important gas component in this task is carbon monoxide whose emission limits vary from 100 to 200 parts per million (ppm), depending on the heat generator technology. However, for the correct determination of its concentration from the sample Raman spectrum, it is necessary to take into account the contribution of nitrogen lines intensity due to their mutual overlap. This paper discusses a technique for deriving carbon monoxide intensity based on fitting the nitrogen spectrum at various temperatures. It is shown that ignoring the Herman–Wallis factors in the fitting procedure lead to an additional measurement error, which increases with temperature and exceeds 350 ppm at T = 1800 K.

© 2020 The Author(s)

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription