Abstract

It has previously been demonstrated that the ratio of the degenerate four wave mixing signal from two hot water line groups near 3231 cm–1 can be used for seedless flame temperature measurements. This paper presents an investigation of the impact of saturation effects on the measured signal intensity from each line group, as well as an estimation of the accuracy of the method. The saturation effects observed here would result in a large systematic error if they are not taken into account when using the degenerate four-wave mixing intensity of these water line groups to calculate the flame temperature.

© 2020 The Author(s)

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Kohse-Höinghaus, R.S. Barlow, M. Aldén, W. Wolfrum. “Combustion at the Focus: Laser Diagnostics and Control”. Proc. Combust. Inst. 2005. 30(1): 89–123.
  2. Z.W. Sun, Z.S. Li, B. Li, M. Aldén. “Flame Temperature Diagnostics with Water Lines Using Mid-Infrared Degenerate Four-Wave Mixing”. J. Raman Spectrosc. 2011. 42(10): 1828–1835.
  3. Z.W. Sun, Z.S. Li, B. Li, Z. Alwahabi, M. Aldén. “Quantitative C2H2 Measurements in Sooty Flames Using Mid-Infrared Polarization Spectroscopy”. Appl. Phys. B: Lasers Opt. 2010. 101(1): 423–432.
  4. D. Hot, R.L. Pedersen, W. Weng, Y. Zhang, M. Aldén, Z.S. Li. “Spatially and Temporally Resolved IR-DFWM Measurement of HCN Released from Gasification of Biomass Pellets”. Proc. Combust. Inst. 2019. 37(2): 1337–1344.
  5. L.S. Rothman, I.E. Gordon, R.J. Barber, H. Dothe, R.R. Gamache, A. Goldman, V.I. Perevalov, S.A. Tashkun, J. Tennyson. “HITEMP, the High-Temperature Molecular Spectroscopic Database”. J. Quant. Spectrosc. Radiat. Transf. 2010. 111(15): 2139–2150.
  6. R.V. Kochanov, I.E. Gordon, L.S. Rothman, P. Wcisło, C. Hill, J.S. Wilzewski. “HITRAN Application Programming Interface (hapi): A Comprehensive Approach to Working with Spectroscopic Data”. J. Quant. Spectrosc. Radiat. Transf. 2016. 177: 15–30.
  7. S. Williams, R.N. Zare, L.A. Rahn. “Reduction of Degenerate Four-Wave Mixing Spectra to Relative Populations II. Strong-Field Limit”. J.Chem. Phys. 1994. 101(2): 1093–1107.
  8. T.A. Reichardt, R.P. Lucht. “Theoretical Calculation of Line Shapes and Saturation Effects in Polarization Spectroscopy”. J.Chem. Phys. 1998. 109(14): 5830–5843.
  9. T.A. Reichardt, W.C. Giancola, R.P. Lucht. “Experimental Investigation of Saturated Polarization Spectroscopy for Quantitative Concentration Measurements”. Appl. Opt. 2000. 39(12): 2002–2008.
  10. R.T. Bratfalean, G.M. Lloyd, P. Ewart. “Degenerate Four-Wave Mixing for Arbitrary Pump and Probe Intensities”. J. Opt. Soc. Am. B. 1999. 16(6): 952–960.
  11. R.P. Lucht, R.L. Farrow, D.J. Rakestraw. “Saturation Effects In Gas-phase Degenerate Four-wave-mixing Spectroscopy – Nonperturbative Calculations”. J. Opt. Soc. Am. B. 1993. 10(9): 1508–1520.
  12. K. Bultitude, R. Bratfalean, P. Ewart. “Saturation Effects in Molecular Spectroscopy Using Degenerate Four-Wave Mixing”. J. Raman Spectrosc. 2003. 34(12): 1030–1036.
  13. T.A. Reichardt, R.P. Lucht. “Interaction of Closely Spaced Resonances in Degenerate Four-Wave-Mixing Spectroscopy”. J. Opt. Soc. Am. B. 1997. 14(10): 2449–2458.
  14. F.Q. Zhao, H. Hiroyasu. “The Applications of Laser Rayleigh Scattering to Combustion Diagnostics”. Prog. Energ. Combust. Sci. 1993. 19(6): 447–485.
  15. J.A. Sutton, J.F. Driscoll. “Rayleigh Scattering Cross Sections of Combustion Species at 266, 355, and 532 nm for Thermometry Applications”. Opt. Lett. 2004. 29(22): 2620–2622.
  16. J. Fielding, J.H. Frank, S.A. Kaiser, M.D. Smooke, M.B. Long. “Polarized/Depolarized Rayleigh Scattering for Determining Fuel Concentrations in Flames”. Proc. Combust. Inst. 2002. 29(2): 2703–2709.
  17. J. Zetterberg, Z.S. Li, M. Afzelius, M. Aldén. “Two-Dimensional Temperature Measurements in Flames Using Filtered Rayleigh Scattering at 254 nm”. Appl. Spectrosc. 2008. 62(7): 778–783.
  18. E.R. Peck, B.N. Khanna. “Dispersion of Nitrogen*”. J. Opt. Soc. Am. 1966. 56(8): 1059–1063.
  19. J. Zhang, Z.H. Lu, L.J. Wang. “Precision Refractive Index Measurements of Air, N2, O2, Ar, and CO2 with a Frequency Comb”. Appl. Opt. 2008. 47(17): 3143–3151.
  20. W. Gardiner, Y. Hidaka, T. Tanzawa. “Refractivity of Combustion Gases”. Combust. Flame. 1981. 40: 213–219.
  21. J.G. Old, K.L. Gentili, E.R. Peck. “Dispersion of Carbon Dioxide*”. J. Opt. Soc. Am. 1971. 61(1): 89–90.
  22. Z.S. Li, M. Rupinski, J. Zetterberg, Z.T. Alwahabi, M. Aldén. “Mid-Infrared Polarization Spectroscopy of Polyatomic Molecules: Detection of Nascent CO2 and H2O in Atmospheric Pressure Flames”. Chem. Phys. Lett. 2005. 407(4): 243–248.
  23. R.L. Pedersen, Z.S. Li. “Infrared Degenerate Four-Wave Mixing with Upconversion Detection for Quantitative Gas Sensing”. J. Vis. Exp. 2019. 145: e59040.
  24. J.S. Dam, P. Tidemand-Lichtenberg, C. Pedersen. “Room-temperature mid-infrared single-photon spectral imaging”. Nat. Photonics. 2012. 6(11): 788–793.
  25. L. Høgstedt, J.S. Dam, A.L. Sahlberg, Z.S. Li, M. Aldén, C. Pedersen, P. Tidemand-Lichtenberg. “Low-Noise Mid-IR Upconversion Detector for Improved IR-Degenerate Four-Wave Mixing Gas Sensing”. Opt. Lett. 2014. 39(18): 5321–5324.
  26. S. Gordon, B.J. McBride. “Nasa Reference Publication 1311: Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications”. National Aeronautics and Space Administration. (1996). https://www.grc.nasa.gov/WWW/CEAWeb/RP-1311P2.htm [accessed Sep 8 (2020)].
  27. E. Kristensson, A. Ehn, J. Bood, M. Aldén. “Advancements in Rayleigh Scattering Thermometry by Means of Structured Illumination”. Proc. Combust. Inst. 2015. 35(3): 3689–3696.
  28. N.J. Kempema, M.B. Long. “Quantitative Rayleigh Thermometry for High Background Scattering Applications with Structured Laser Illumination Planar Imaging”. Appl. Opt. 2014. 53(29): 6688–6697.
  29. G.H. Wang, N.T. Clemens, P.L. Varghese. “Two-Point, High-Repetition-Rate Rayleigh Thermometry in Flames: Techniques to Correct for Apparent Dissipation Induced by Noise”. Appl. Opt. 2005. 44(31): 6741–6751.
  30. R.B. Miles, W.R. Lempert, J.N. Forkey. “Laser Rayleigh Scattering”. Meas. Sci. Technol. 2001. 12(5): R33–R51.

2019 (2)

D. Hot, R.L. Pedersen, W. Weng, Y. Zhang, M. Aldén, Z.S. Li. “Spatially and Temporally Resolved IR-DFWM Measurement of HCN Released from Gasification of Biomass Pellets”. Proc. Combust. Inst. 2019. 37(2): 1337–1344.

R.L. Pedersen, Z.S. Li. “Infrared Degenerate Four-Wave Mixing with Upconversion Detection for Quantitative Gas Sensing”. J. Vis. Exp. 2019. 145: e59040.

2016 (1)

R.V. Kochanov, I.E. Gordon, L.S. Rothman, P. Wcisło, C. Hill, J.S. Wilzewski. “HITRAN Application Programming Interface (hapi): A Comprehensive Approach to Working with Spectroscopic Data”. J. Quant. Spectrosc. Radiat. Transf. 2016. 177: 15–30.

2015 (1)

E. Kristensson, A. Ehn, J. Bood, M. Aldén. “Advancements in Rayleigh Scattering Thermometry by Means of Structured Illumination”. Proc. Combust. Inst. 2015. 35(3): 3689–3696.

2014 (2)

N.J. Kempema, M.B. Long. “Quantitative Rayleigh Thermometry for High Background Scattering Applications with Structured Laser Illumination Planar Imaging”. Appl. Opt. 2014. 53(29): 6688–6697.

L. Høgstedt, J.S. Dam, A.L. Sahlberg, Z.S. Li, M. Aldén, C. Pedersen, P. Tidemand-Lichtenberg. “Low-Noise Mid-IR Upconversion Detector for Improved IR-Degenerate Four-Wave Mixing Gas Sensing”. Opt. Lett. 2014. 39(18): 5321–5324.

2012 (1)

J.S. Dam, P. Tidemand-Lichtenberg, C. Pedersen. “Room-temperature mid-infrared single-photon spectral imaging”. Nat. Photonics. 2012. 6(11): 788–793.

2011 (1)

Z.W. Sun, Z.S. Li, B. Li, M. Aldén. “Flame Temperature Diagnostics with Water Lines Using Mid-Infrared Degenerate Four-Wave Mixing”. J. Raman Spectrosc. 2011. 42(10): 1828–1835.

2010 (2)

Z.W. Sun, Z.S. Li, B. Li, Z. Alwahabi, M. Aldén. “Quantitative C2H2 Measurements in Sooty Flames Using Mid-Infrared Polarization Spectroscopy”. Appl. Phys. B: Lasers Opt. 2010. 101(1): 423–432.

L.S. Rothman, I.E. Gordon, R.J. Barber, H. Dothe, R.R. Gamache, A. Goldman, V.I. Perevalov, S.A. Tashkun, J. Tennyson. “HITEMP, the High-Temperature Molecular Spectroscopic Database”. J. Quant. Spectrosc. Radiat. Transf. 2010. 111(15): 2139–2150.

2008 (2)

J. Zetterberg, Z.S. Li, M. Afzelius, M. Aldén. “Two-Dimensional Temperature Measurements in Flames Using Filtered Rayleigh Scattering at 254 nm”. Appl. Spectrosc. 2008. 62(7): 778–783.

J. Zhang, Z.H. Lu, L.J. Wang. “Precision Refractive Index Measurements of Air, N2, O2, Ar, and CO2 with a Frequency Comb”. Appl. Opt. 2008. 47(17): 3143–3151.

2005 (3)

G.H. Wang, N.T. Clemens, P.L. Varghese. “Two-Point, High-Repetition-Rate Rayleigh Thermometry in Flames: Techniques to Correct for Apparent Dissipation Induced by Noise”. Appl. Opt. 2005. 44(31): 6741–6751.

Z.S. Li, M. Rupinski, J. Zetterberg, Z.T. Alwahabi, M. Aldén. “Mid-Infrared Polarization Spectroscopy of Polyatomic Molecules: Detection of Nascent CO2 and H2O in Atmospheric Pressure Flames”. Chem. Phys. Lett. 2005. 407(4): 243–248.

K. Kohse-Höinghaus, R.S. Barlow, M. Aldén, W. Wolfrum. “Combustion at the Focus: Laser Diagnostics and Control”. Proc. Combust. Inst. 2005. 30(1): 89–123.

2004 (1)

J.A. Sutton, J.F. Driscoll. “Rayleigh Scattering Cross Sections of Combustion Species at 266, 355, and 532 nm for Thermometry Applications”. Opt. Lett. 2004. 29(22): 2620–2622.

2003 (1)

K. Bultitude, R. Bratfalean, P. Ewart. “Saturation Effects in Molecular Spectroscopy Using Degenerate Four-Wave Mixing”. J. Raman Spectrosc. 2003. 34(12): 1030–1036.

2002 (1)

J. Fielding, J.H. Frank, S.A. Kaiser, M.D. Smooke, M.B. Long. “Polarized/Depolarized Rayleigh Scattering for Determining Fuel Concentrations in Flames”. Proc. Combust. Inst. 2002. 29(2): 2703–2709.

2001 (1)

R.B. Miles, W.R. Lempert, J.N. Forkey. “Laser Rayleigh Scattering”. Meas. Sci. Technol. 2001. 12(5): R33–R51.

2000 (1)

T.A. Reichardt, W.C. Giancola, R.P. Lucht. “Experimental Investigation of Saturated Polarization Spectroscopy for Quantitative Concentration Measurements”. Appl. Opt. 2000. 39(12): 2002–2008.

1999 (1)

1998 (1)

T.A. Reichardt, R.P. Lucht. “Theoretical Calculation of Line Shapes and Saturation Effects in Polarization Spectroscopy”. J.Chem. Phys. 1998. 109(14): 5830–5843.

1997 (1)

1994 (1)

S. Williams, R.N. Zare, L.A. Rahn. “Reduction of Degenerate Four-Wave Mixing Spectra to Relative Populations II. Strong-Field Limit”. J.Chem. Phys. 1994. 101(2): 1093–1107.

1993 (2)

F.Q. Zhao, H. Hiroyasu. “The Applications of Laser Rayleigh Scattering to Combustion Diagnostics”. Prog. Energ. Combust. Sci. 1993. 19(6): 447–485.

R.P. Lucht, R.L. Farrow, D.J. Rakestraw. “Saturation Effects In Gas-phase Degenerate Four-wave-mixing Spectroscopy – Nonperturbative Calculations”. J. Opt. Soc. Am. B. 1993. 10(9): 1508–1520.

1981 (1)

W. Gardiner, Y. Hidaka, T. Tanzawa. “Refractivity of Combustion Gases”. Combust. Flame. 1981. 40: 213–219.

1971 (1)

J.G. Old, K.L. Gentili, E.R. Peck. “Dispersion of Carbon Dioxide*”. J. Opt. Soc. Am. 1971. 61(1): 89–90.

1966 (1)

E.R. Peck, B.N. Khanna. “Dispersion of Nitrogen*”. J. Opt. Soc. Am. 1966. 56(8): 1059–1063.

Afzelius, M.

J. Zetterberg, Z.S. Li, M. Afzelius, M. Aldén. “Two-Dimensional Temperature Measurements in Flames Using Filtered Rayleigh Scattering at 254 nm”. Appl. Spectrosc. 2008. 62(7): 778–783.

Aldén, M.

D. Hot, R.L. Pedersen, W. Weng, Y. Zhang, M. Aldén, Z.S. Li. “Spatially and Temporally Resolved IR-DFWM Measurement of HCN Released from Gasification of Biomass Pellets”. Proc. Combust. Inst. 2019. 37(2): 1337–1344.

E. Kristensson, A. Ehn, J. Bood, M. Aldén. “Advancements in Rayleigh Scattering Thermometry by Means of Structured Illumination”. Proc. Combust. Inst. 2015. 35(3): 3689–3696.

L. Høgstedt, J.S. Dam, A.L. Sahlberg, Z.S. Li, M. Aldén, C. Pedersen, P. Tidemand-Lichtenberg. “Low-Noise Mid-IR Upconversion Detector for Improved IR-Degenerate Four-Wave Mixing Gas Sensing”. Opt. Lett. 2014. 39(18): 5321–5324.

Z.W. Sun, Z.S. Li, B. Li, M. Aldén. “Flame Temperature Diagnostics with Water Lines Using Mid-Infrared Degenerate Four-Wave Mixing”. J. Raman Spectrosc. 2011. 42(10): 1828–1835.

Z.W. Sun, Z.S. Li, B. Li, Z. Alwahabi, M. Aldén. “Quantitative C2H2 Measurements in Sooty Flames Using Mid-Infrared Polarization Spectroscopy”. Appl. Phys. B: Lasers Opt. 2010. 101(1): 423–432.

J. Zetterberg, Z.S. Li, M. Afzelius, M. Aldén. “Two-Dimensional Temperature Measurements in Flames Using Filtered Rayleigh Scattering at 254 nm”. Appl. Spectrosc. 2008. 62(7): 778–783.

K. Kohse-Höinghaus, R.S. Barlow, M. Aldén, W. Wolfrum. “Combustion at the Focus: Laser Diagnostics and Control”. Proc. Combust. Inst. 2005. 30(1): 89–123.

Z.S. Li, M. Rupinski, J. Zetterberg, Z.T. Alwahabi, M. Aldén. “Mid-Infrared Polarization Spectroscopy of Polyatomic Molecules: Detection of Nascent CO2 and H2O in Atmospheric Pressure Flames”. Chem. Phys. Lett. 2005. 407(4): 243–248.

Alwahabi, Z.

Z.W. Sun, Z.S. Li, B. Li, Z. Alwahabi, M. Aldén. “Quantitative C2H2 Measurements in Sooty Flames Using Mid-Infrared Polarization Spectroscopy”. Appl. Phys. B: Lasers Opt. 2010. 101(1): 423–432.

Alwahabi, Z.T.

Z.S. Li, M. Rupinski, J. Zetterberg, Z.T. Alwahabi, M. Aldén. “Mid-Infrared Polarization Spectroscopy of Polyatomic Molecules: Detection of Nascent CO2 and H2O in Atmospheric Pressure Flames”. Chem. Phys. Lett. 2005. 407(4): 243–248.

Barber, R.J.

L.S. Rothman, I.E. Gordon, R.J. Barber, H. Dothe, R.R. Gamache, A. Goldman, V.I. Perevalov, S.A. Tashkun, J. Tennyson. “HITEMP, the High-Temperature Molecular Spectroscopic Database”. J. Quant. Spectrosc. Radiat. Transf. 2010. 111(15): 2139–2150.

Barlow, R.S.

K. Kohse-Höinghaus, R.S. Barlow, M. Aldén, W. Wolfrum. “Combustion at the Focus: Laser Diagnostics and Control”. Proc. Combust. Inst. 2005. 30(1): 89–123.

Bood, J.

E. Kristensson, A. Ehn, J. Bood, M. Aldén. “Advancements in Rayleigh Scattering Thermometry by Means of Structured Illumination”. Proc. Combust. Inst. 2015. 35(3): 3689–3696.

Bratfalean, R.

K. Bultitude, R. Bratfalean, P. Ewart. “Saturation Effects in Molecular Spectroscopy Using Degenerate Four-Wave Mixing”. J. Raman Spectrosc. 2003. 34(12): 1030–1036.

Bratfalean, R.T.

Bultitude, K.

K. Bultitude, R. Bratfalean, P. Ewart. “Saturation Effects in Molecular Spectroscopy Using Degenerate Four-Wave Mixing”. J. Raman Spectrosc. 2003. 34(12): 1030–1036.

Clemens, N.T.

G.H. Wang, N.T. Clemens, P.L. Varghese. “Two-Point, High-Repetition-Rate Rayleigh Thermometry in Flames: Techniques to Correct for Apparent Dissipation Induced by Noise”. Appl. Opt. 2005. 44(31): 6741–6751.

Dam, J.S.

L. Høgstedt, J.S. Dam, A.L. Sahlberg, Z.S. Li, M. Aldén, C. Pedersen, P. Tidemand-Lichtenberg. “Low-Noise Mid-IR Upconversion Detector for Improved IR-Degenerate Four-Wave Mixing Gas Sensing”. Opt. Lett. 2014. 39(18): 5321–5324.

J.S. Dam, P. Tidemand-Lichtenberg, C. Pedersen. “Room-temperature mid-infrared single-photon spectral imaging”. Nat. Photonics. 2012. 6(11): 788–793.

Dothe, H.

L.S. Rothman, I.E. Gordon, R.J. Barber, H. Dothe, R.R. Gamache, A. Goldman, V.I. Perevalov, S.A. Tashkun, J. Tennyson. “HITEMP, the High-Temperature Molecular Spectroscopic Database”. J. Quant. Spectrosc. Radiat. Transf. 2010. 111(15): 2139–2150.

Driscoll, J.F.

J.A. Sutton, J.F. Driscoll. “Rayleigh Scattering Cross Sections of Combustion Species at 266, 355, and 532 nm for Thermometry Applications”. Opt. Lett. 2004. 29(22): 2620–2622.

Ehn, A.

E. Kristensson, A. Ehn, J. Bood, M. Aldén. “Advancements in Rayleigh Scattering Thermometry by Means of Structured Illumination”. Proc. Combust. Inst. 2015. 35(3): 3689–3696.

Ewart, P.

K. Bultitude, R. Bratfalean, P. Ewart. “Saturation Effects in Molecular Spectroscopy Using Degenerate Four-Wave Mixing”. J. Raman Spectrosc. 2003. 34(12): 1030–1036.

R.T. Bratfalean, G.M. Lloyd, P. Ewart. “Degenerate Four-Wave Mixing for Arbitrary Pump and Probe Intensities”. J. Opt. Soc. Am. B. 1999. 16(6): 952–960.

Farrow, R.L.

Fielding, J.

J. Fielding, J.H. Frank, S.A. Kaiser, M.D. Smooke, M.B. Long. “Polarized/Depolarized Rayleigh Scattering for Determining Fuel Concentrations in Flames”. Proc. Combust. Inst. 2002. 29(2): 2703–2709.

Forkey, J.N.

R.B. Miles, W.R. Lempert, J.N. Forkey. “Laser Rayleigh Scattering”. Meas. Sci. Technol. 2001. 12(5): R33–R51.

Frank, J.H.

J. Fielding, J.H. Frank, S.A. Kaiser, M.D. Smooke, M.B. Long. “Polarized/Depolarized Rayleigh Scattering for Determining Fuel Concentrations in Flames”. Proc. Combust. Inst. 2002. 29(2): 2703–2709.

Gamache, R.R.

L.S. Rothman, I.E. Gordon, R.J. Barber, H. Dothe, R.R. Gamache, A. Goldman, V.I. Perevalov, S.A. Tashkun, J. Tennyson. “HITEMP, the High-Temperature Molecular Spectroscopic Database”. J. Quant. Spectrosc. Radiat. Transf. 2010. 111(15): 2139–2150.

Gardiner, W.

W. Gardiner, Y. Hidaka, T. Tanzawa. “Refractivity of Combustion Gases”. Combust. Flame. 1981. 40: 213–219.

Gentili, K.L.

J.G. Old, K.L. Gentili, E.R. Peck. “Dispersion of Carbon Dioxide*”. J. Opt. Soc. Am. 1971. 61(1): 89–90.

Giancola, W.C.

T.A. Reichardt, W.C. Giancola, R.P. Lucht. “Experimental Investigation of Saturated Polarization Spectroscopy for Quantitative Concentration Measurements”. Appl. Opt. 2000. 39(12): 2002–2008.

Goldman, A.

L.S. Rothman, I.E. Gordon, R.J. Barber, H. Dothe, R.R. Gamache, A. Goldman, V.I. Perevalov, S.A. Tashkun, J. Tennyson. “HITEMP, the High-Temperature Molecular Spectroscopic Database”. J. Quant. Spectrosc. Radiat. Transf. 2010. 111(15): 2139–2150.

Gordon, I.E.

R.V. Kochanov, I.E. Gordon, L.S. Rothman, P. Wcisło, C. Hill, J.S. Wilzewski. “HITRAN Application Programming Interface (hapi): A Comprehensive Approach to Working with Spectroscopic Data”. J. Quant. Spectrosc. Radiat. Transf. 2016. 177: 15–30.

L.S. Rothman, I.E. Gordon, R.J. Barber, H. Dothe, R.R. Gamache, A. Goldman, V.I. Perevalov, S.A. Tashkun, J. Tennyson. “HITEMP, the High-Temperature Molecular Spectroscopic Database”. J. Quant. Spectrosc. Radiat. Transf. 2010. 111(15): 2139–2150.

Hidaka, Y.

W. Gardiner, Y. Hidaka, T. Tanzawa. “Refractivity of Combustion Gases”. Combust. Flame. 1981. 40: 213–219.

Hill, C.

R.V. Kochanov, I.E. Gordon, L.S. Rothman, P. Wcisło, C. Hill, J.S. Wilzewski. “HITRAN Application Programming Interface (hapi): A Comprehensive Approach to Working with Spectroscopic Data”. J. Quant. Spectrosc. Radiat. Transf. 2016. 177: 15–30.

Hiroyasu, H.

F.Q. Zhao, H. Hiroyasu. “The Applications of Laser Rayleigh Scattering to Combustion Diagnostics”. Prog. Energ. Combust. Sci. 1993. 19(6): 447–485.

Høgstedt, L.

L. Høgstedt, J.S. Dam, A.L. Sahlberg, Z.S. Li, M. Aldén, C. Pedersen, P. Tidemand-Lichtenberg. “Low-Noise Mid-IR Upconversion Detector for Improved IR-Degenerate Four-Wave Mixing Gas Sensing”. Opt. Lett. 2014. 39(18): 5321–5324.

Hot, D.

D. Hot, R.L. Pedersen, W. Weng, Y. Zhang, M. Aldén, Z.S. Li. “Spatially and Temporally Resolved IR-DFWM Measurement of HCN Released from Gasification of Biomass Pellets”. Proc. Combust. Inst. 2019. 37(2): 1337–1344.

Kaiser, S.A.

J. Fielding, J.H. Frank, S.A. Kaiser, M.D. Smooke, M.B. Long. “Polarized/Depolarized Rayleigh Scattering for Determining Fuel Concentrations in Flames”. Proc. Combust. Inst. 2002. 29(2): 2703–2709.

Kempema, N.J.

N.J. Kempema, M.B. Long. “Quantitative Rayleigh Thermometry for High Background Scattering Applications with Structured Laser Illumination Planar Imaging”. Appl. Opt. 2014. 53(29): 6688–6697.

Khanna, B.N.

E.R. Peck, B.N. Khanna. “Dispersion of Nitrogen*”. J. Opt. Soc. Am. 1966. 56(8): 1059–1063.

Kochanov, R.V.

R.V. Kochanov, I.E. Gordon, L.S. Rothman, P. Wcisło, C. Hill, J.S. Wilzewski. “HITRAN Application Programming Interface (hapi): A Comprehensive Approach to Working with Spectroscopic Data”. J. Quant. Spectrosc. Radiat. Transf. 2016. 177: 15–30.

Kohse-Höinghaus, K.

K. Kohse-Höinghaus, R.S. Barlow, M. Aldén, W. Wolfrum. “Combustion at the Focus: Laser Diagnostics and Control”. Proc. Combust. Inst. 2005. 30(1): 89–123.

Kristensson, E.

E. Kristensson, A. Ehn, J. Bood, M. Aldén. “Advancements in Rayleigh Scattering Thermometry by Means of Structured Illumination”. Proc. Combust. Inst. 2015. 35(3): 3689–3696.

Lempert, W.R.

R.B. Miles, W.R. Lempert, J.N. Forkey. “Laser Rayleigh Scattering”. Meas. Sci. Technol. 2001. 12(5): R33–R51.

Li, B.

Z.W. Sun, Z.S. Li, B. Li, M. Aldén. “Flame Temperature Diagnostics with Water Lines Using Mid-Infrared Degenerate Four-Wave Mixing”. J. Raman Spectrosc. 2011. 42(10): 1828–1835.

Z.W. Sun, Z.S. Li, B. Li, Z. Alwahabi, M. Aldén. “Quantitative C2H2 Measurements in Sooty Flames Using Mid-Infrared Polarization Spectroscopy”. Appl. Phys. B: Lasers Opt. 2010. 101(1): 423–432.

Li, Z.S.

D. Hot, R.L. Pedersen, W. Weng, Y. Zhang, M. Aldén, Z.S. Li. “Spatially and Temporally Resolved IR-DFWM Measurement of HCN Released from Gasification of Biomass Pellets”. Proc. Combust. Inst. 2019. 37(2): 1337–1344.

R.L. Pedersen, Z.S. Li. “Infrared Degenerate Four-Wave Mixing with Upconversion Detection for Quantitative Gas Sensing”. J. Vis. Exp. 2019. 145: e59040.

L. Høgstedt, J.S. Dam, A.L. Sahlberg, Z.S. Li, M. Aldén, C. Pedersen, P. Tidemand-Lichtenberg. “Low-Noise Mid-IR Upconversion Detector for Improved IR-Degenerate Four-Wave Mixing Gas Sensing”. Opt. Lett. 2014. 39(18): 5321–5324.

Z.W. Sun, Z.S. Li, B. Li, M. Aldén. “Flame Temperature Diagnostics with Water Lines Using Mid-Infrared Degenerate Four-Wave Mixing”. J. Raman Spectrosc. 2011. 42(10): 1828–1835.

Z.W. Sun, Z.S. Li, B. Li, Z. Alwahabi, M. Aldén. “Quantitative C2H2 Measurements in Sooty Flames Using Mid-Infrared Polarization Spectroscopy”. Appl. Phys. B: Lasers Opt. 2010. 101(1): 423–432.

J. Zetterberg, Z.S. Li, M. Afzelius, M. Aldén. “Two-Dimensional Temperature Measurements in Flames Using Filtered Rayleigh Scattering at 254 nm”. Appl. Spectrosc. 2008. 62(7): 778–783.

Z.S. Li, M. Rupinski, J. Zetterberg, Z.T. Alwahabi, M. Aldén. “Mid-Infrared Polarization Spectroscopy of Polyatomic Molecules: Detection of Nascent CO2 and H2O in Atmospheric Pressure Flames”. Chem. Phys. Lett. 2005. 407(4): 243–248.

Lloyd, G.M.

Long, M.B.

N.J. Kempema, M.B. Long. “Quantitative Rayleigh Thermometry for High Background Scattering Applications with Structured Laser Illumination Planar Imaging”. Appl. Opt. 2014. 53(29): 6688–6697.

J. Fielding, J.H. Frank, S.A. Kaiser, M.D. Smooke, M.B. Long. “Polarized/Depolarized Rayleigh Scattering for Determining Fuel Concentrations in Flames”. Proc. Combust. Inst. 2002. 29(2): 2703–2709.

Lu, Z.H.

J. Zhang, Z.H. Lu, L.J. Wang. “Precision Refractive Index Measurements of Air, N2, O2, Ar, and CO2 with a Frequency Comb”. Appl. Opt. 2008. 47(17): 3143–3151.

Lucht, R.P.

T.A. Reichardt, W.C. Giancola, R.P. Lucht. “Experimental Investigation of Saturated Polarization Spectroscopy for Quantitative Concentration Measurements”. Appl. Opt. 2000. 39(12): 2002–2008.

T.A. Reichardt, R.P. Lucht. “Theoretical Calculation of Line Shapes and Saturation Effects in Polarization Spectroscopy”. J.Chem. Phys. 1998. 109(14): 5830–5843.

T.A. Reichardt, R.P. Lucht. “Interaction of Closely Spaced Resonances in Degenerate Four-Wave-Mixing Spectroscopy”. J. Opt. Soc. Am. B. 1997. 14(10): 2449–2458.

R.P. Lucht, R.L. Farrow, D.J. Rakestraw. “Saturation Effects In Gas-phase Degenerate Four-wave-mixing Spectroscopy – Nonperturbative Calculations”. J. Opt. Soc. Am. B. 1993. 10(9): 1508–1520.

Miles, R.B.

R.B. Miles, W.R. Lempert, J.N. Forkey. “Laser Rayleigh Scattering”. Meas. Sci. Technol. 2001. 12(5): R33–R51.

Old, J.G.

J.G. Old, K.L. Gentili, E.R. Peck. “Dispersion of Carbon Dioxide*”. J. Opt. Soc. Am. 1971. 61(1): 89–90.

Peck, E.R.

J.G. Old, K.L. Gentili, E.R. Peck. “Dispersion of Carbon Dioxide*”. J. Opt. Soc. Am. 1971. 61(1): 89–90.

E.R. Peck, B.N. Khanna. “Dispersion of Nitrogen*”. J. Opt. Soc. Am. 1966. 56(8): 1059–1063.

Pedersen, C.

L. Høgstedt, J.S. Dam, A.L. Sahlberg, Z.S. Li, M. Aldén, C. Pedersen, P. Tidemand-Lichtenberg. “Low-Noise Mid-IR Upconversion Detector for Improved IR-Degenerate Four-Wave Mixing Gas Sensing”. Opt. Lett. 2014. 39(18): 5321–5324.

J.S. Dam, P. Tidemand-Lichtenberg, C. Pedersen. “Room-temperature mid-infrared single-photon spectral imaging”. Nat. Photonics. 2012. 6(11): 788–793.

Pedersen, R.L.

R.L. Pedersen, Z.S. Li. “Infrared Degenerate Four-Wave Mixing with Upconversion Detection for Quantitative Gas Sensing”. J. Vis. Exp. 2019. 145: e59040.

D. Hot, R.L. Pedersen, W. Weng, Y. Zhang, M. Aldén, Z.S. Li. “Spatially and Temporally Resolved IR-DFWM Measurement of HCN Released from Gasification of Biomass Pellets”. Proc. Combust. Inst. 2019. 37(2): 1337–1344.

Perevalov, V.I.

L.S. Rothman, I.E. Gordon, R.J. Barber, H. Dothe, R.R. Gamache, A. Goldman, V.I. Perevalov, S.A. Tashkun, J. Tennyson. “HITEMP, the High-Temperature Molecular Spectroscopic Database”. J. Quant. Spectrosc. Radiat. Transf. 2010. 111(15): 2139–2150.

Rahn, L.A.

S. Williams, R.N. Zare, L.A. Rahn. “Reduction of Degenerate Four-Wave Mixing Spectra to Relative Populations II. Strong-Field Limit”. J.Chem. Phys. 1994. 101(2): 1093–1107.

Rakestraw, D.J.

Reichardt, T.A.

T.A. Reichardt, W.C. Giancola, R.P. Lucht. “Experimental Investigation of Saturated Polarization Spectroscopy for Quantitative Concentration Measurements”. Appl. Opt. 2000. 39(12): 2002–2008.

T.A. Reichardt, R.P. Lucht. “Theoretical Calculation of Line Shapes and Saturation Effects in Polarization Spectroscopy”. J.Chem. Phys. 1998. 109(14): 5830–5843.

T.A. Reichardt, R.P. Lucht. “Interaction of Closely Spaced Resonances in Degenerate Four-Wave-Mixing Spectroscopy”. J. Opt. Soc. Am. B. 1997. 14(10): 2449–2458.

Rothman, L.S.

R.V. Kochanov, I.E. Gordon, L.S. Rothman, P. Wcisło, C. Hill, J.S. Wilzewski. “HITRAN Application Programming Interface (hapi): A Comprehensive Approach to Working with Spectroscopic Data”. J. Quant. Spectrosc. Radiat. Transf. 2016. 177: 15–30.

L.S. Rothman, I.E. Gordon, R.J. Barber, H. Dothe, R.R. Gamache, A. Goldman, V.I. Perevalov, S.A. Tashkun, J. Tennyson. “HITEMP, the High-Temperature Molecular Spectroscopic Database”. J. Quant. Spectrosc. Radiat. Transf. 2010. 111(15): 2139–2150.

Rupinski, M.

Z.S. Li, M. Rupinski, J. Zetterberg, Z.T. Alwahabi, M. Aldén. “Mid-Infrared Polarization Spectroscopy of Polyatomic Molecules: Detection of Nascent CO2 and H2O in Atmospheric Pressure Flames”. Chem. Phys. Lett. 2005. 407(4): 243–248.

Sahlberg, A.L.

L. Høgstedt, J.S. Dam, A.L. Sahlberg, Z.S. Li, M. Aldén, C. Pedersen, P. Tidemand-Lichtenberg. “Low-Noise Mid-IR Upconversion Detector for Improved IR-Degenerate Four-Wave Mixing Gas Sensing”. Opt. Lett. 2014. 39(18): 5321–5324.

Smooke, M.D.

J. Fielding, J.H. Frank, S.A. Kaiser, M.D. Smooke, M.B. Long. “Polarized/Depolarized Rayleigh Scattering for Determining Fuel Concentrations in Flames”. Proc. Combust. Inst. 2002. 29(2): 2703–2709.

Sun, Z.W.

Z.W. Sun, Z.S. Li, B. Li, M. Aldén. “Flame Temperature Diagnostics with Water Lines Using Mid-Infrared Degenerate Four-Wave Mixing”. J. Raman Spectrosc. 2011. 42(10): 1828–1835.

Z.W. Sun, Z.S. Li, B. Li, Z. Alwahabi, M. Aldén. “Quantitative C2H2 Measurements in Sooty Flames Using Mid-Infrared Polarization Spectroscopy”. Appl. Phys. B: Lasers Opt. 2010. 101(1): 423–432.

Sutton, J.A.

J.A. Sutton, J.F. Driscoll. “Rayleigh Scattering Cross Sections of Combustion Species at 266, 355, and 532 nm for Thermometry Applications”. Opt. Lett. 2004. 29(22): 2620–2622.

Tanzawa, T.

W. Gardiner, Y. Hidaka, T. Tanzawa. “Refractivity of Combustion Gases”. Combust. Flame. 1981. 40: 213–219.

Tashkun, S.A.

L.S. Rothman, I.E. Gordon, R.J. Barber, H. Dothe, R.R. Gamache, A. Goldman, V.I. Perevalov, S.A. Tashkun, J. Tennyson. “HITEMP, the High-Temperature Molecular Spectroscopic Database”. J. Quant. Spectrosc. Radiat. Transf. 2010. 111(15): 2139–2150.

Tennyson, J.

L.S. Rothman, I.E. Gordon, R.J. Barber, H. Dothe, R.R. Gamache, A. Goldman, V.I. Perevalov, S.A. Tashkun, J. Tennyson. “HITEMP, the High-Temperature Molecular Spectroscopic Database”. J. Quant. Spectrosc. Radiat. Transf. 2010. 111(15): 2139–2150.

Tidemand-Lichtenberg, P.

L. Høgstedt, J.S. Dam, A.L. Sahlberg, Z.S. Li, M. Aldén, C. Pedersen, P. Tidemand-Lichtenberg. “Low-Noise Mid-IR Upconversion Detector for Improved IR-Degenerate Four-Wave Mixing Gas Sensing”. Opt. Lett. 2014. 39(18): 5321–5324.

J.S. Dam, P. Tidemand-Lichtenberg, C. Pedersen. “Room-temperature mid-infrared single-photon spectral imaging”. Nat. Photonics. 2012. 6(11): 788–793.

Varghese, P.L.

G.H. Wang, N.T. Clemens, P.L. Varghese. “Two-Point, High-Repetition-Rate Rayleigh Thermometry in Flames: Techniques to Correct for Apparent Dissipation Induced by Noise”. Appl. Opt. 2005. 44(31): 6741–6751.

Wang, G.H.

G.H. Wang, N.T. Clemens, P.L. Varghese. “Two-Point, High-Repetition-Rate Rayleigh Thermometry in Flames: Techniques to Correct for Apparent Dissipation Induced by Noise”. Appl. Opt. 2005. 44(31): 6741–6751.

Wang, L.J.

J. Zhang, Z.H. Lu, L.J. Wang. “Precision Refractive Index Measurements of Air, N2, O2, Ar, and CO2 with a Frequency Comb”. Appl. Opt. 2008. 47(17): 3143–3151.

Wcislo, P.

R.V. Kochanov, I.E. Gordon, L.S. Rothman, P. Wcisło, C. Hill, J.S. Wilzewski. “HITRAN Application Programming Interface (hapi): A Comprehensive Approach to Working with Spectroscopic Data”. J. Quant. Spectrosc. Radiat. Transf. 2016. 177: 15–30.

Weng, W.

D. Hot, R.L. Pedersen, W. Weng, Y. Zhang, M. Aldén, Z.S. Li. “Spatially and Temporally Resolved IR-DFWM Measurement of HCN Released from Gasification of Biomass Pellets”. Proc. Combust. Inst. 2019. 37(2): 1337–1344.

Williams, S.

S. Williams, R.N. Zare, L.A. Rahn. “Reduction of Degenerate Four-Wave Mixing Spectra to Relative Populations II. Strong-Field Limit”. J.Chem. Phys. 1994. 101(2): 1093–1107.

Wilzewski, J.S.

R.V. Kochanov, I.E. Gordon, L.S. Rothman, P. Wcisło, C. Hill, J.S. Wilzewski. “HITRAN Application Programming Interface (hapi): A Comprehensive Approach to Working with Spectroscopic Data”. J. Quant. Spectrosc. Radiat. Transf. 2016. 177: 15–30.

Wolfrum, W.

K. Kohse-Höinghaus, R.S. Barlow, M. Aldén, W. Wolfrum. “Combustion at the Focus: Laser Diagnostics and Control”. Proc. Combust. Inst. 2005. 30(1): 89–123.

Zare, R.N.

S. Williams, R.N. Zare, L.A. Rahn. “Reduction of Degenerate Four-Wave Mixing Spectra to Relative Populations II. Strong-Field Limit”. J.Chem. Phys. 1994. 101(2): 1093–1107.

Zetterberg, J.

J. Zetterberg, Z.S. Li, M. Afzelius, M. Aldén. “Two-Dimensional Temperature Measurements in Flames Using Filtered Rayleigh Scattering at 254 nm”. Appl. Spectrosc. 2008. 62(7): 778–783.

Z.S. Li, M. Rupinski, J. Zetterberg, Z.T. Alwahabi, M. Aldén. “Mid-Infrared Polarization Spectroscopy of Polyatomic Molecules: Detection of Nascent CO2 and H2O in Atmospheric Pressure Flames”. Chem. Phys. Lett. 2005. 407(4): 243–248.

Zhang, J.

J. Zhang, Z.H. Lu, L.J. Wang. “Precision Refractive Index Measurements of Air, N2, O2, Ar, and CO2 with a Frequency Comb”. Appl. Opt. 2008. 47(17): 3143–3151.

Zhang, Y.

D. Hot, R.L. Pedersen, W. Weng, Y. Zhang, M. Aldén, Z.S. Li. “Spatially and Temporally Resolved IR-DFWM Measurement of HCN Released from Gasification of Biomass Pellets”. Proc. Combust. Inst. 2019. 37(2): 1337–1344.

Zhao, F.Q.

F.Q. Zhao, H. Hiroyasu. “The Applications of Laser Rayleigh Scattering to Combustion Diagnostics”. Prog. Energ. Combust. Sci. 1993. 19(6): 447–485.

Appl. Opt (4)

T.A. Reichardt, W.C. Giancola, R.P. Lucht. “Experimental Investigation of Saturated Polarization Spectroscopy for Quantitative Concentration Measurements”. Appl. Opt. 2000. 39(12): 2002–2008.

J. Zhang, Z.H. Lu, L.J. Wang. “Precision Refractive Index Measurements of Air, N2, O2, Ar, and CO2 with a Frequency Comb”. Appl. Opt. 2008. 47(17): 3143–3151.

N.J. Kempema, M.B. Long. “Quantitative Rayleigh Thermometry for High Background Scattering Applications with Structured Laser Illumination Planar Imaging”. Appl. Opt. 2014. 53(29): 6688–6697.

G.H. Wang, N.T. Clemens, P.L. Varghese. “Two-Point, High-Repetition-Rate Rayleigh Thermometry in Flames: Techniques to Correct for Apparent Dissipation Induced by Noise”. Appl. Opt. 2005. 44(31): 6741–6751.

Appl. Phys. B: Lasers Opt (1)

Z.W. Sun, Z.S. Li, B. Li, Z. Alwahabi, M. Aldén. “Quantitative C2H2 Measurements in Sooty Flames Using Mid-Infrared Polarization Spectroscopy”. Appl. Phys. B: Lasers Opt. 2010. 101(1): 423–432.

Appl. Spectrosc (1)

J. Zetterberg, Z.S. Li, M. Afzelius, M. Aldén. “Two-Dimensional Temperature Measurements in Flames Using Filtered Rayleigh Scattering at 254 nm”. Appl. Spectrosc. 2008. 62(7): 778–783.

Chem. Phys. Lett (1)

Z.S. Li, M. Rupinski, J. Zetterberg, Z.T. Alwahabi, M. Aldén. “Mid-Infrared Polarization Spectroscopy of Polyatomic Molecules: Detection of Nascent CO2 and H2O in Atmospheric Pressure Flames”. Chem. Phys. Lett. 2005. 407(4): 243–248.

Combust. Flame (1)

W. Gardiner, Y. Hidaka, T. Tanzawa. “Refractivity of Combustion Gases”. Combust. Flame. 1981. 40: 213–219.

J. Opt. Soc. Am (2)

J.G. Old, K.L. Gentili, E.R. Peck. “Dispersion of Carbon Dioxide*”. J. Opt. Soc. Am. 1971. 61(1): 89–90.

E.R. Peck, B.N. Khanna. “Dispersion of Nitrogen*”. J. Opt. Soc. Am. 1966. 56(8): 1059–1063.

J. Opt. Soc. Am. B (3)

J. Quant. Spectrosc. Radiat. Transf (2)

L.S. Rothman, I.E. Gordon, R.J. Barber, H. Dothe, R.R. Gamache, A. Goldman, V.I. Perevalov, S.A. Tashkun, J. Tennyson. “HITEMP, the High-Temperature Molecular Spectroscopic Database”. J. Quant. Spectrosc. Radiat. Transf. 2010. 111(15): 2139–2150.

R.V. Kochanov, I.E. Gordon, L.S. Rothman, P. Wcisło, C. Hill, J.S. Wilzewski. “HITRAN Application Programming Interface (hapi): A Comprehensive Approach to Working with Spectroscopic Data”. J. Quant. Spectrosc. Radiat. Transf. 2016. 177: 15–30.

J. Raman Spectrosc (2)

Z.W. Sun, Z.S. Li, B. Li, M. Aldén. “Flame Temperature Diagnostics with Water Lines Using Mid-Infrared Degenerate Four-Wave Mixing”. J. Raman Spectrosc. 2011. 42(10): 1828–1835.

K. Bultitude, R. Bratfalean, P. Ewart. “Saturation Effects in Molecular Spectroscopy Using Degenerate Four-Wave Mixing”. J. Raman Spectrosc. 2003. 34(12): 1030–1036.

J. Vis. Exp (1)

R.L. Pedersen, Z.S. Li. “Infrared Degenerate Four-Wave Mixing with Upconversion Detection for Quantitative Gas Sensing”. J. Vis. Exp. 2019. 145: e59040.

J.Chem. Phys (2)

S. Williams, R.N. Zare, L.A. Rahn. “Reduction of Degenerate Four-Wave Mixing Spectra to Relative Populations II. Strong-Field Limit”. J.Chem. Phys. 1994. 101(2): 1093–1107.

T.A. Reichardt, R.P. Lucht. “Theoretical Calculation of Line Shapes and Saturation Effects in Polarization Spectroscopy”. J.Chem. Phys. 1998. 109(14): 5830–5843.

Meas. Sci. Technol (1)

R.B. Miles, W.R. Lempert, J.N. Forkey. “Laser Rayleigh Scattering”. Meas. Sci. Technol. 2001. 12(5): R33–R51.

Nat. Photonics (1)

J.S. Dam, P. Tidemand-Lichtenberg, C. Pedersen. “Room-temperature mid-infrared single-photon spectral imaging”. Nat. Photonics. 2012. 6(11): 788–793.

Opt. Lett (2)

L. Høgstedt, J.S. Dam, A.L. Sahlberg, Z.S. Li, M. Aldén, C. Pedersen, P. Tidemand-Lichtenberg. “Low-Noise Mid-IR Upconversion Detector for Improved IR-Degenerate Four-Wave Mixing Gas Sensing”. Opt. Lett. 2014. 39(18): 5321–5324.

J.A. Sutton, J.F. Driscoll. “Rayleigh Scattering Cross Sections of Combustion Species at 266, 355, and 532 nm for Thermometry Applications”. Opt. Lett. 2004. 29(22): 2620–2622.

Proc. Combust. Inst (4)

J. Fielding, J.H. Frank, S.A. Kaiser, M.D. Smooke, M.B. Long. “Polarized/Depolarized Rayleigh Scattering for Determining Fuel Concentrations in Flames”. Proc. Combust. Inst. 2002. 29(2): 2703–2709.

K. Kohse-Höinghaus, R.S. Barlow, M. Aldén, W. Wolfrum. “Combustion at the Focus: Laser Diagnostics and Control”. Proc. Combust. Inst. 2005. 30(1): 89–123.

D. Hot, R.L. Pedersen, W. Weng, Y. Zhang, M. Aldén, Z.S. Li. “Spatially and Temporally Resolved IR-DFWM Measurement of HCN Released from Gasification of Biomass Pellets”. Proc. Combust. Inst. 2019. 37(2): 1337–1344.

E. Kristensson, A. Ehn, J. Bood, M. Aldén. “Advancements in Rayleigh Scattering Thermometry by Means of Structured Illumination”. Proc. Combust. Inst. 2015. 35(3): 3689–3696.

Prog. Energ. Combust. Sci (1)

F.Q. Zhao, H. Hiroyasu. “The Applications of Laser Rayleigh Scattering to Combustion Diagnostics”. Prog. Energ. Combust. Sci. 1993. 19(6): 447–485.

Other (1)

S. Gordon, B.J. McBride. “Nasa Reference Publication 1311: Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications”. National Aeronautics and Space Administration. (1996). https://www.grc.nasa.gov/WWW/CEAWeb/RP-1311P2.htm [accessed Sep 8 (2020)].

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.