Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 74,
  • Issue 5,
  • pp. 553-562
  • (2020)

Raman Spectroscopy: An Exploratory Study to Identify Post-Radiation Cell Survival

Not Accessible

Your library or personal account may give you access

Abstract

Resistance to radiotherapy has been an impediment in the treatment of cancer, and the inability to detect it at an early stage further exacerbates the prognosis. We have assessed the feasibility of Raman spectroscopy as a rapid assay for predicting radiosensitivity of cancer cells in comparison to the conventional biological assays. Cell lines derived from breast adenocarcinoma (MCF7), gingivobuccal squamous cell carcinoma (ITOC-03), and human embryonic kidney (HEK293) were subjected to varying doses of ionizing radiation. Cell viability of irradiated cells was assessed at different time points using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and Raman spectroscopy, and colony-forming capability was evaluated by clonogenic assay. Radiosensitivity observed using MTT assay was limited by the finding of similar cell viability in all the three cell lines 24 h post-irradiation. However, cell survival assessed using clonogenic assay and principal component linear discriminant analysis (PC-LDA) classification of Raman spectra showed correlating patterns. Irradiated cells showed loss of nucleic acid features and enhancement of 750 cm−1 peak probably attributing to resonance Raman band of cytochromes in all three cell lines. PC-LDA analysis affirmed MCF7 to be a radioresistant cell line as compared to ITOC-03 and HEK293 to be the most radiosensitive cell line. Raman spectroscopy is shown to be a rapid and alternative assay for identification of radiosensitivity as compared to the gold standard clonogenic assay.

© 2020 The Author(s)

PDF Article
More Like This
Discrimination of radiosensitive and radioresistant murine lymphoma cells by Raman spectroscopy and SERS

Iris Aguilar-Hernández, Diana L. Cárdenas-Chavez, Tzarara López-Luke, Alejandra García-García, Marcela Herrera-Domínguez, Eduardo Pisano, and Nancy Ornelas-Soto
Biomed. Opt. Express 11(1) 388-405 (2020)

Study on the chemodrug-induced effect in nasopharyngeal carcinoma cells using laser tweezer Raman spectroscopy

Sufang Qiu, Miaomiao Li, Jun Liu, Xiaochuan Chen, Ting Lin, Yunchao Xu, Yang Chen, Youliang Weng, Yuhui Pan, Shangyuan Feng, Xiandong Lin, Lurong Zhang, and Duo Lin
Biomed. Opt. Express 11(4) 1819-1833 (2020)

Anti-cancer effect of bee venom on human MDA-MB-231 breast cancer cells using Raman spectroscopy

Gyeong Bok Jung, Jeong-Eun Huh, Hyo-Jung Lee, Dohyun Kim, Gi-Ja Lee, Hun-Kuk Park, and Jae-Dong Lee
Biomed. Opt. Express 9(11) 5703-5718 (2018)

Supplementary Material (1)

NameDescription
Supplement 1       sj-pdf-1-asp-10.1177_0003702820908352 - Supplemental material for Raman Spectroscopy: An Exploratory Study to Identify Post-Radiation Cell Survival

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.