Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 74,
  • Issue 10,
  • pp. 1263-1273
  • (2020)

Noninvasive Cellular Oxygenation Measurement During Graded Hypoxia Using Visible–Near-Infrared Spectroscopy

Not Accessible

Your library or personal account may give you access

Abstract

In critically ill patients, direct knowledge of intracellular pO2 would allow for identification of cellular hypoxia, which when prolonged leads to organ failure. We have developed a visible–near-infrared optical system that noninvasively measures myoglobin saturation, which is directly related to intracellular pO2, from the surface of the skin. We used an animal model of graded hypoxia from low levels of inspired oxygen (n = 5) and verified that low intracellular pO2 is correlated with high steady-state serum lactate values. In addition, the pO2 gradient between arterial blood and inside muscle cells was 83 mm Hg at 21% O2, but fell to 24 mm Hg at 8% O2. Continuous myoglobin saturation measurement in skeletal muscle displayed the same trends as cerebral oxygenation with no lag in changes over time, demonstrating its relevance as a measure of systemic oxygenation.

© 2020 The Author(s)

PDF Article
More Like This
Noninvasive investigation of blood oxygenation dynamics of tumors by near-infrared spectroscopy

Hanli Liu, Yulin Song, Katherine L. Worden, Xin Jiang, Anca Constantinescu, and Ralph P. Mason
Appl. Opt. 39(28) 5231-5243 (2000)

Quantitative measurement of muscle oxygen saturation without influence from skin and fat using continuous-wave near infrared spectroscopy

Ye Yang, Olusola O. Soyemi, Peter J. Scott, Michelle R. Landry, Stuart M. C. Lee, Leah Stroud, and Babs R. Soller
Opt. Express 15(21) 13715-13730 (2007)

Hemodynamics of the sternocleidomastoid measured with frequency domain near-infrared spectroscopy towards non-invasive monitoring during mechanical ventilation

Raeef Istfan, Carlos A. Gómez, Matthew Applegate, Dmitry Rozenberg, W. Darlene Reid, and Darren Roblyer
Biomed. Opt. Express 12(7) 4147-4162 (2021)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.