Abstract

We demonstrate quantitative measurements of methane (CH4) mole fractions in a low-pressure fuel-rich premixed dimethyl ether/oxygen/argon flat flame (Φ = 1.87, 37 mbar) using mid-infrared (IR) polarization spectroscopy (IRPS). Non-intrusive in situ detection of CH4, acetylene (C2H2), and ethane (C2H6) in the flame was realized by probing the fundamental asymmetric C–H stretching vibration bands in the respective molecules in the spectral range 2970–3340 cm−1. The flame was stabilized on a McKenna-type porous plug burner hosted in a low-pressure chamber. The temperature at different heights above the burner (HAB) was measured from the line ratio of temperature-sensitive H2O spectral lines recorded using IRPS. Quantitative measurements of CH4 mole fractions at different HAB in the flame were realized by a calibration measurement in a low-pressure gas flow of N2 with a small admixture of known amount of CH4. A comprehensive study of the collision effects on the IRPS signal was performed in order to quantify the flame measurement. The concentration and temperature measurements were found to agree reasonably well with simulations using Chemkin. These measurements prove the potential of IRPS as a sensitive, non-intrusive, in situ technique in low pressure flames.

© 2019 The Author(s)

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C.A. Taatjes, N. Hansen, A. McIlroy, et al. “Enols are Common Intermediates in Hydrocarbon Oxidation”. Science. 2005. 308(5730): 1887–1889.
  2. M. Musick, P.J. Van Tiggelen, J. Vandooren. “Experimental Study of the Structure of Several Fuel-Rich Premixed Flames of Methane, Oxygen, and Argon”. Combust. Flame. 1996. 105(4): 433–450.
  3. J. Wang, M. Chaos, B. Yang, et al. “Composition of Reaction Intermediates for Stoichiometric and Fuel-Rich Dimethyl Ether Flames: Flame-Sampling Mass Spectrometry and Modeling Studies”. Phys. Chem. Chem. Phys. 2009. 11(9): 1328–1339.
  4. T.A. Cool, J. Wang, N. Hansen, et al. “Photoionization Mass Spectrometry and Modeling Studies of the Chemistry of Fuel-Rich Dimethyl Ether Flames”. Proc. Combust. Inst. 2007. 31(1): 285–293.
  5. K. Kohse-Höinghaus, P. Osswald, T.A. Cool, et al. “Biofuel Combustion Chemistry: From Ethanol to Biodiesel”. Angew. Chem. Int. Edit. 2010. 49(21): 3572–3597.
  6. C. Brackmann, J. Bood, M. Aldén, et al. “Quantitative Measurements of Species and Temperature in a DME-Air Counterflow Diffusion Flame Using Laser Diagnostic Methods”. Combust. Sci. Technol. 2006. 178(6): 1165–1184.
  7. E.W. Kaiser, T.J. Wallington, M.D. Hurley, et al. “Experimental and Modeling Study of Premixed Atmospheric-Pressure Dimethyl Ether-Air Flames”. J. Phys. Chem. A. 2000. 104(35): 8194–8206.
  8. A.T. Hartlieb, B. Atakan, K. Kohse-Höinghaus. “Effects of a Sampling Quartz Nozzle on the Flame Structure of a Fuel-Rich Low-Pressure Propene Flame”. Combust. Flame. 2000. 121(4): 610–624.
  9. N. Hansen, R.S. Tranter, J.B. Randazzo, et al. “Investigation of Sampling-Probe Distorted Temperature Fields with X-ray Fluorescence Spectroscopy”. Proc. Combust. Inst. 2018. DOI: 10.1016/j.proci.2018.05.034.
  10. C. Wieman, T.W. Hänsch. “Doppler-Free Laser Polarization Spectroscopy”. Phys. Rev. Lett. 1976. 36(20): 1170–1170.
  11. A.A. Suvernev, A. Dreizler, T. Dreier, et al. “Polarization-Spectroscopic Measurement and Spectral Simulation of OH (A2Σ–X2Π) and NH (A3Π–X3Σ) Transitions in Atmospheric-Pressure Flames”. Appl. Phys. B: Lasers Opt. 1995. 61(5): 421–427.
  12. K. Nyholm, R. Fritzon, M. Aldén. “Two-Dimensional Imaging of OH in Flames by Use of Polarization Spectroscopy”. Opt. Lett. 1993. 18(19): 1672–1674.
  13. K. Nyholm, R. Maier, C.G. Aminoff, et al. “Detection of OH in Flames by Using Polarization Spectroscopy”. Appl. Opt. 1993. 32(6): 919–924.
  14. K. Nyholm, M. Kaivola, C.G. Aminoff. “Polarization Spectroscopy Applied to C2 Detection in a Flame”. Appl. Phys. B: Lasers Opt. 1995. 60(1): 5–10.
  15. B. Löfstedt, R. Fritzon, M. Aldén. “Investigation of NO Detection in Flames by the Use of Polarization Spectroscopy”. Appl. Opt. 1996. 35(12): 2140–2146.
  16. Z.S. Li, M. Rupinski, J. Zetterberg, et al. “Mid-Infrared Polarization Spectroscopy of Polyatomic Molecules: Detection of Nascent CO2 and H2O in Atmospheric Pressure Flames”. Chem. Phys. Lett. 2005. 407(4–6): 243–248.
  17. Z.S. Li, C.H. Hu, J. Zetterberg, et al. “Midinfrared Polarization Spectroscopy of OH and Hot Water in Low Pressure Lean Premixed Flames”. J. Chem. Phys. 2007. 127(8): 084310–084310.
  18. Z.S. Li, M. Rupinski, J. Zetterberg, et al. “Detection of Methane with Mid-Infrared Polarization Spectroscopy”. Appl. Phys. B: Lasers Opt. 2004. 79(2): 135–138.
  19. Z.S. Li, M. Rupinski, J. Zetterberg, et al. “Mid-Infrared PS and LIF Detection of CH4 and C2H6 in Cold Flows and Flames at Atmospheric Pressure”. Proc. Combust. Inst. 2005. 30(1): 1629–1636.
  20. Z.S. Li, Z.W. Sun, B. Li, et al. “Spatially Resolved Trace Detection of HCl in Flames with Mid-Infrared Polarization Spectroscopy”. Opt. Lett. 2008. 33(16): 1836–1838.
  21. Z.S. Li, M. Linvin, J. Zetterberg, et al. “Mid-Infrared Polarization Spectroscopy of C2H2: Non-Intrusive Spatial-Resolved Measurements of Polyatomic Hydrocarbon Molecules for Combustion Diagnostics”. Proc. Combust. Inst. 2007. 31(1): 817–824.
  22. Z.W. Sun, Z. Li, B. Li, et al. “Quantitative C2H2 Measurements in Sooty Flames Using Mid-Infrared Polarization Spectroscopy”. Appl. Phys. B: Lasers Opt. 2010. 101(1): 423–432.
  23. Z.W. Sun, Z.S. Li, A.A. Konnov, et al. “Quantitative HCN Measurements in CH4/N2O/O2/N2 Flames Using Mid-Infrared Polarization Spectroscopy”. Combust. Flame. 2011. 158(10): 1898–1904.
  24. Z.W. Sun, Z.S. Li, B. Li, et al. “Flame Temperature Diagnostics with Water Lines Using Mid-Infrared Degenerate Four-Wave Mixing”. J. Raman Spectrosc. 2011. 42(10): 1828–1835.
  25. I.E. Gordon, L.S. Rothman, C. Hill, et al. “The HITRAN2016 Molecular Spectroscopic Database”. J. Quant. Spectrosc. Radiat. Transfer. 2017. 203(1): 3–69.
  26. L.S. Rothman, I.E. Gordon, R.J. Barber, et al. “HITEMP, the High-Temperature Molecular Spectroscopic Database”. J. Quant. Spectrosc. Radiat. Transfer. 2010. 111(15): 2139–2150.
  27. R.J. Kee, F.M. Rupley, J.A. Miller. “Chemkin-II: A Fortran Chemical Kinetic Package for the Analysis of Gas Phase Chemical Kinetics”. Sandia National Laboratories Report. Livermore, CA: Sandia National Laboratories, 1991.
  28. Z. Zhao, M. Chaos, A. Kazakov, et al. “Thermal Decomposition Reaction and a Comprehensive Kinetic Model of Dimethyl Ether”. Int. J. Chem. Kinet. 2008. 40(1): 1–18.
  29. W. Demtröder. “Polarization spectroscopy”. In: Laser Spectroscopy: Basic Concepts and Instrumentation. Berlin, Heidelberg, Germany: Springer-Verlag, 2008. 4th ed. Vol. 2, Chap. 2.4, Pp. 108–109.
  30. R.E. Teets, F.V. Kowalski, W.T. Hill, et al. “Laser Polarization Spectroscopy”. In: A.H. Zewail, editor. Advances in Laser Spectroscopy I. Proc. SPIE. 1977. 0013: 80–87.
  31. J. Kiefer, P. Ewart. “Laser Diagnostics and Minor Species Detection in Combustion using Resonant Four-Wave Mixing”. Prog. Energy Combust. Sci. 2011. 37(5): 525–564.
  32. I.S. Burns, J. Hult, G. Hartung, et al. “A Thermometry Technique Based on Atomic Lineshapes Using Diode Laser LIF in Flames”. Proc. Combust. Inst. 2007. 31(1): 775–782.
  33. J. Borggren, I.S. Burns, A.-L. Sahlberg, et al. “Temperature Imaging in Low-Pressure Flames Using Diode Laser Two-Line Atomic Fluorescence Employing a Novel Indium Seeding Technique”. Appl. Phys. B: Lasers Opt. 2016. 122(3): 1–8.
  34. T.A. Reichardt, R.P. Lucht. “Theoretical Calculation of Line Shapes and Saturation Effects in Polarization Spectroscopy”. J. Chem. Phys. 1998. 109(14): 5830–5843.
  35. S.P. Kearney, K. Frederickson, T.W. Grasser. “Dual-Pump Coherent Anti-Stokes Raman Scattering Thermometry in a Sooting Turbulent Pool Fire”. Proc. Combust. Inst. 2009. 32(1): 871–878.
  36. S. Roy, J.R. Gord, A.K. Patnaik. “Recent Advances in Coherent Anti-Stokes Raman Scattering Spectroscopy: Fundamental Developments and Applications in Reacting Flows”. Prog. Energy Combust. Sci. 2010. 36(2): 280–306.
  37. M.P. Lee, B.K. McMillin, R.K. Hanson. “Temperature-Measurements in Gases by Use of Planar Laser-Induced Fluorescence Imaging of NO”. Appl. Opt. 1993. 32(27): 5379–5396.
  38. A.T. Hartlieb, B. Atakan, K. Kohse-Hoinghaus. “Temperature Measurement in Fuel-Rich Non-Sooting Low-Pressure Hydrocarbon Flames”. Appl. Phys. B: Lasers Opt. 2000. 70(3): 435–445.
  39. I. Burns, N. Lamoureux, C. Kaminski, et al. “Diode Laser Atomic Fluorescence Temperature Measurements in Low-Pressure Flames”. Appl. Phys. B: Lasers Opt. 2008. 93(4): 907–914.
  40. B. Williams, M. Edwards, R. Stone, et al. “High Precision in-Cylinder Gas Thermometry Using Laser Induced Gratings: Quantitative Measurement of Evaporative Cooling with Gasoline/Alcohol Blends in a GDI Optical Engine”. Combust. Flame. 2014. 161(1): 270–279.
  41. H. Latzel, A. Dreizler, T. Dreier, et al. “Thermal Grating and Broadband Degenerate Four-Wave Mixing Spectroscopy of OH in High-Pressure Flames”. Appl. Phys. B: Lasers Opt. 1998. 67(5): 667–673.
  42. P. Ewart, M. Kaczmarek. “Two-Dimensional Mapping of Temperature in a Flame by Degenerate Four-Wave Mixing in OH”. Appl. Opt. 1991. 30(27): 3996–4000.
  43. G.M. Lloyd, I.G. Hughes, R. Bratfalean, et al. “Broadband Degenerate Four-Wave Mixing of OH for Flame Thermometry”. Appl. Phys. B: Lasers Opt. 1998. 67(1): 107–113.
  44. G.M. Lloyd, P. Ewart. “High Resolution Spectroscopy and Spectral Simulation of C2 Using Degenerate Four-Wave Mixing”. J. Chem. Phys. 1999. 110(1): 385–392.
  45. K. Bultitude, R. Bratfalean, P. Ewart. “Saturation Effects in Molecular Spectroscopy Using Degenerate Four-Wave Mixing”. J. Raman Spectrosc. 2003. 34(12): 1030–1036.
  46. R.T. Bratfalean, G.M. Lloyd, P. Ewart. “Degenerate Four-Wave Mixing for Arbitrary Pump and Probe Intensities”. J. Opt. Soc. Am. B. 1999. 16(6): 952–960.
  47. R. Friedman, E. Burke. “Measurement of Temperature Distribution in a Low-Pressure Flat Flame”. J. Chem. Phys. 1954. 22(5): 824–830.
  48. A. Sane, A. Satija, R.P. Lucht, et al. “Simultaneous CO Concentration and Temperature Measurements Using Tunable Diode Laser Absorption Spectroscopy Near 2.3 µm”. Appl. Phys. B: Lasers Opt. 2014. 117(1): 7–18.
  49. R.J. Hargreaves, E. Buzan, M. Dulick, et al. “High-Resolution Absorption Cross Sections of C2H6 at Elevated Temperatures”. Mol. Astrophys. 2015. 1(1): 20–25.
  50. R.J. Hargreaves, C.A. Beale, L. Michaux, et al. “Hot Methane Line Lists for Exoplanet and Brown Dwarf Atmospheres”. Astrophys. J. 2012. 757(1): 46–55.
  51. A.L. Sahlberg, J. Zhou, M. Aldén, et al. “Investigation of Ro-Vibrational Spectra of Small Hydrocarbons at Elevated Temperatures Using Infrared Degenerate Four-Wave Mixing”. J. Raman Spectrosc. 2016. 47(9): 1130–1139.
  52. M. Alrefae, E.-T. Es-sebbar, A. Farooq. “Absorption Cross-Section Measurements of Methane, Ethane, Ethylene and Methanol at High Temperatures”. J. Mol. Spectrosc. 2014. 303(0): 8–14.
  53. L.R. Brown, D. Chris Benner, J.P. Champion, et al. “Methane Line Parameters in HITRAN”. J. Quant. Spectrosc. Radiat. Transfer. 2003. 82(1–4): 219–238.
  54. A.S. Pine. “High-Resolution Methane ν3-Band Spectra Using a Stabilized Tunable Difference-Frequency Laser System”. J. Opt. Soc. Am. 1976. 66(2): 97–108.
  55. M. Abe, K. Iwakuni, S. Okubo, et al. “Accurate Transition Frequency List of the ν3 Band of Methane from Sub-Doppler Resolution Comb-Referenced Spectroscopy”. J. Opt. Soc. Am. B. 2013. 30(4): 1027–1035.
  56. J.J. Harrison, N.D.C. Allen, P.F. Bernath. “Infrared Absorption Cross Sections for Ethane (C2H6) in the 3 µm Region”. J. Quant. Spectrosc. Radiat. Transfer. 2010. 111(3): 357–363.
  57. K. Richard, P. Ewart. “High-Resolution Infrared Polarization Spectroscopy and Degenerate Four Wave Mixing Spectroscopy of Methane”. Appl. Phys. B: Lasers Opt. 2009. 94(4): 715–723.
  58. Z.W. Sun. Development and Application of Non-Linear Mid-Infrared Laser Spectroscopy for Combustion Diagnostics. [PhD thesis]. Media Tryck AB, Lund, Sweden. Lund University, 2012.
  59. J. Walewski, C.F. Kaminski, S.F. Hanna, et al. “Dependence of Partially Saturated Polarization Spectroscopy Signals on Pump Intensity and Collision Rate”. Phys. Rev. A. 2001. 64(6): 063816–063816.
  60. S.R. Turns. “Chemical Kinetics”. In: An Introduction to Combustion: Concepts and Applications. Singapore: McGraw-Hill Higher Education, 2006. Vol. 1, Chap. 4, Pp. 114–115.

2017 (1)

I.E. Gordon, L.S. Rothman, C. Hill, et al. “The HITRAN2016 Molecular Spectroscopic Database”. J. Quant. Spectrosc. Radiat. Transfer. 2017. 203(1): 3–69.

2016 (2)

J. Borggren, I.S. Burns, A.-L. Sahlberg, et al. “Temperature Imaging in Low-Pressure Flames Using Diode Laser Two-Line Atomic Fluorescence Employing a Novel Indium Seeding Technique”. Appl. Phys. B: Lasers Opt. 2016. 122(3): 1–8.

A.L. Sahlberg, J. Zhou, M. Aldén, et al. “Investigation of Ro-Vibrational Spectra of Small Hydrocarbons at Elevated Temperatures Using Infrared Degenerate Four-Wave Mixing”. J. Raman Spectrosc. 2016. 47(9): 1130–1139.

2015 (1)

R.J. Hargreaves, E. Buzan, M. Dulick, et al. “High-Resolution Absorption Cross Sections of C2H6 at Elevated Temperatures”. Mol. Astrophys. 2015. 1(1): 20–25.

2014 (3)

B. Williams, M. Edwards, R. Stone, et al. “High Precision in-Cylinder Gas Thermometry Using Laser Induced Gratings: Quantitative Measurement of Evaporative Cooling with Gasoline/Alcohol Blends in a GDI Optical Engine”. Combust. Flame. 2014. 161(1): 270–279.

M. Alrefae, E.-T. Es-sebbar, A. Farooq. “Absorption Cross-Section Measurements of Methane, Ethane, Ethylene and Methanol at High Temperatures”. J. Mol. Spectrosc. 2014. 303(0): 8–14.

A. Sane, A. Satija, R.P. Lucht, et al. “Simultaneous CO Concentration and Temperature Measurements Using Tunable Diode Laser Absorption Spectroscopy Near 2.3 µm”. Appl. Phys. B: Lasers Opt. 2014. 117(1): 7–18.

2013 (1)

2012 (1)

R.J. Hargreaves, C.A. Beale, L. Michaux, et al. “Hot Methane Line Lists for Exoplanet and Brown Dwarf Atmospheres”. Astrophys. J. 2012. 757(1): 46–55.

2011 (3)

J. Kiefer, P. Ewart. “Laser Diagnostics and Minor Species Detection in Combustion using Resonant Four-Wave Mixing”. Prog. Energy Combust. Sci. 2011. 37(5): 525–564.

Z.W. Sun, Z.S. Li, A.A. Konnov, et al. “Quantitative HCN Measurements in CH4/N2O/O2/N2 Flames Using Mid-Infrared Polarization Spectroscopy”. Combust. Flame. 2011. 158(10): 1898–1904.

Z.W. Sun, Z.S. Li, B. Li, et al. “Flame Temperature Diagnostics with Water Lines Using Mid-Infrared Degenerate Four-Wave Mixing”. J. Raman Spectrosc. 2011. 42(10): 1828–1835.

2010 (5)

L.S. Rothman, I.E. Gordon, R.J. Barber, et al. “HITEMP, the High-Temperature Molecular Spectroscopic Database”. J. Quant. Spectrosc. Radiat. Transfer. 2010. 111(15): 2139–2150.

Z.W. Sun, Z. Li, B. Li, et al. “Quantitative C2H2 Measurements in Sooty Flames Using Mid-Infrared Polarization Spectroscopy”. Appl. Phys. B: Lasers Opt. 2010. 101(1): 423–432.

S. Roy, J.R. Gord, A.K. Patnaik. “Recent Advances in Coherent Anti-Stokes Raman Scattering Spectroscopy: Fundamental Developments and Applications in Reacting Flows”. Prog. Energy Combust. Sci. 2010. 36(2): 280–306.

K. Kohse-Höinghaus, P. Osswald, T.A. Cool, et al. “Biofuel Combustion Chemistry: From Ethanol to Biodiesel”. Angew. Chem. Int. Edit. 2010. 49(21): 3572–3597.

J.J. Harrison, N.D.C. Allen, P.F. Bernath. “Infrared Absorption Cross Sections for Ethane (C2H6) in the 3 µm Region”. J. Quant. Spectrosc. Radiat. Transfer. 2010. 111(3): 357–363.

2009 (3)

K. Richard, P. Ewart. “High-Resolution Infrared Polarization Spectroscopy and Degenerate Four Wave Mixing Spectroscopy of Methane”. Appl. Phys. B: Lasers Opt. 2009. 94(4): 715–723.

J. Wang, M. Chaos, B. Yang, et al. “Composition of Reaction Intermediates for Stoichiometric and Fuel-Rich Dimethyl Ether Flames: Flame-Sampling Mass Spectrometry and Modeling Studies”. Phys. Chem. Chem. Phys. 2009. 11(9): 1328–1339.

S.P. Kearney, K. Frederickson, T.W. Grasser. “Dual-Pump Coherent Anti-Stokes Raman Scattering Thermometry in a Sooting Turbulent Pool Fire”. Proc. Combust. Inst. 2009. 32(1): 871–878.

2008 (3)

I. Burns, N. Lamoureux, C. Kaminski, et al. “Diode Laser Atomic Fluorescence Temperature Measurements in Low-Pressure Flames”. Appl. Phys. B: Lasers Opt. 2008. 93(4): 907–914.

Z. Zhao, M. Chaos, A. Kazakov, et al. “Thermal Decomposition Reaction and a Comprehensive Kinetic Model of Dimethyl Ether”. Int. J. Chem. Kinet. 2008. 40(1): 1–18.

Z.S. Li, Z.W. Sun, B. Li, et al. “Spatially Resolved Trace Detection of HCl in Flames with Mid-Infrared Polarization Spectroscopy”. Opt. Lett. 2008. 33(16): 1836–1838.

2007 (4)

Z.S. Li, M. Linvin, J. Zetterberg, et al. “Mid-Infrared Polarization Spectroscopy of C2H2: Non-Intrusive Spatial-Resolved Measurements of Polyatomic Hydrocarbon Molecules for Combustion Diagnostics”. Proc. Combust. Inst. 2007. 31(1): 817–824.

I.S. Burns, J. Hult, G. Hartung, et al. “A Thermometry Technique Based on Atomic Lineshapes Using Diode Laser LIF in Flames”. Proc. Combust. Inst. 2007. 31(1): 775–782.

T.A. Cool, J. Wang, N. Hansen, et al. “Photoionization Mass Spectrometry and Modeling Studies of the Chemistry of Fuel-Rich Dimethyl Ether Flames”. Proc. Combust. Inst. 2007. 31(1): 285–293.

Z.S. Li, C.H. Hu, J. Zetterberg, et al. “Midinfrared Polarization Spectroscopy of OH and Hot Water in Low Pressure Lean Premixed Flames”. J. Chem. Phys. 2007. 127(8): 084310–084310.

2006 (1)

C. Brackmann, J. Bood, M. Aldén, et al. “Quantitative Measurements of Species and Temperature in a DME-Air Counterflow Diffusion Flame Using Laser Diagnostic Methods”. Combust. Sci. Technol. 2006. 178(6): 1165–1184.

2005 (3)

C.A. Taatjes, N. Hansen, A. McIlroy, et al. “Enols are Common Intermediates in Hydrocarbon Oxidation”. Science. 2005. 308(5730): 1887–1889.

Z.S. Li, M. Rupinski, J. Zetterberg, et al. “Mid-Infrared Polarization Spectroscopy of Polyatomic Molecules: Detection of Nascent CO2 and H2O in Atmospheric Pressure Flames”. Chem. Phys. Lett. 2005. 407(4–6): 243–248.

Z.S. Li, M. Rupinski, J. Zetterberg, et al. “Mid-Infrared PS and LIF Detection of CH4 and C2H6 in Cold Flows and Flames at Atmospheric Pressure”. Proc. Combust. Inst. 2005. 30(1): 1629–1636.

2004 (1)

Z.S. Li, M. Rupinski, J. Zetterberg, et al. “Detection of Methane with Mid-Infrared Polarization Spectroscopy”. Appl. Phys. B: Lasers Opt. 2004. 79(2): 135–138.

2003 (2)

L.R. Brown, D. Chris Benner, J.P. Champion, et al. “Methane Line Parameters in HITRAN”. J. Quant. Spectrosc. Radiat. Transfer. 2003. 82(1–4): 219–238.

K. Bultitude, R. Bratfalean, P. Ewart. “Saturation Effects in Molecular Spectroscopy Using Degenerate Four-Wave Mixing”. J. Raman Spectrosc. 2003. 34(12): 1030–1036.

2001 (1)

J. Walewski, C.F. Kaminski, S.F. Hanna, et al. “Dependence of Partially Saturated Polarization Spectroscopy Signals on Pump Intensity and Collision Rate”. Phys. Rev. A. 2001. 64(6): 063816–063816.

2000 (3)

E.W. Kaiser, T.J. Wallington, M.D. Hurley, et al. “Experimental and Modeling Study of Premixed Atmospheric-Pressure Dimethyl Ether-Air Flames”. J. Phys. Chem. A. 2000. 104(35): 8194–8206.

A.T. Hartlieb, B. Atakan, K. Kohse-Höinghaus. “Effects of a Sampling Quartz Nozzle on the Flame Structure of a Fuel-Rich Low-Pressure Propene Flame”. Combust. Flame. 2000. 121(4): 610–624.

A.T. Hartlieb, B. Atakan, K. Kohse-Hoinghaus. “Temperature Measurement in Fuel-Rich Non-Sooting Low-Pressure Hydrocarbon Flames”. Appl. Phys. B: Lasers Opt. 2000. 70(3): 435–445.

1999 (2)

R.T. Bratfalean, G.M. Lloyd, P. Ewart. “Degenerate Four-Wave Mixing for Arbitrary Pump and Probe Intensities”. J. Opt. Soc. Am. B. 1999. 16(6): 952–960.

G.M. Lloyd, P. Ewart. “High Resolution Spectroscopy and Spectral Simulation of C2 Using Degenerate Four-Wave Mixing”. J. Chem. Phys. 1999. 110(1): 385–392.

1998 (3)

G.M. Lloyd, I.G. Hughes, R. Bratfalean, et al. “Broadband Degenerate Four-Wave Mixing of OH for Flame Thermometry”. Appl. Phys. B: Lasers Opt. 1998. 67(1): 107–113.

H. Latzel, A. Dreizler, T. Dreier, et al. “Thermal Grating and Broadband Degenerate Four-Wave Mixing Spectroscopy of OH in High-Pressure Flames”. Appl. Phys. B: Lasers Opt. 1998. 67(5): 667–673.

T.A. Reichardt, R.P. Lucht. “Theoretical Calculation of Line Shapes and Saturation Effects in Polarization Spectroscopy”. J. Chem. Phys. 1998. 109(14): 5830–5843.

1996 (2)

M. Musick, P.J. Van Tiggelen, J. Vandooren. “Experimental Study of the Structure of Several Fuel-Rich Premixed Flames of Methane, Oxygen, and Argon”. Combust. Flame. 1996. 105(4): 433–450.

B. Löfstedt, R. Fritzon, M. Aldén. “Investigation of NO Detection in Flames by the Use of Polarization Spectroscopy”. Appl. Opt. 1996. 35(12): 2140–2146.

1995 (2)

K. Nyholm, M. Kaivola, C.G. Aminoff. “Polarization Spectroscopy Applied to C2 Detection in a Flame”. Appl. Phys. B: Lasers Opt. 1995. 60(1): 5–10.

A.A. Suvernev, A. Dreizler, T. Dreier, et al. “Polarization-Spectroscopic Measurement and Spectral Simulation of OH (A2Σ–X2Π) and NH (A3Π–X3Σ) Transitions in Atmospheric-Pressure Flames”. Appl. Phys. B: Lasers Opt. 1995. 61(5): 421–427.

1993 (3)

K. Nyholm, R. Fritzon, M. Aldén. “Two-Dimensional Imaging of OH in Flames by Use of Polarization Spectroscopy”. Opt. Lett. 1993. 18(19): 1672–1674.

K. Nyholm, R. Maier, C.G. Aminoff, et al. “Detection of OH in Flames by Using Polarization Spectroscopy”. Appl. Opt. 1993. 32(6): 919–924.

M.P. Lee, B.K. McMillin, R.K. Hanson. “Temperature-Measurements in Gases by Use of Planar Laser-Induced Fluorescence Imaging of NO”. Appl. Opt. 1993. 32(27): 5379–5396.

1991 (1)

P. Ewart, M. Kaczmarek. “Two-Dimensional Mapping of Temperature in a Flame by Degenerate Four-Wave Mixing in OH”. Appl. Opt. 1991. 30(27): 3996–4000.

1976 (2)

A.S. Pine. “High-Resolution Methane ν3-Band Spectra Using a Stabilized Tunable Difference-Frequency Laser System”. J. Opt. Soc. Am. 1976. 66(2): 97–108.

C. Wieman, T.W. Hänsch. “Doppler-Free Laser Polarization Spectroscopy”. Phys. Rev. Lett. 1976. 36(20): 1170–1170.

1954 (1)

R. Friedman, E. Burke. “Measurement of Temperature Distribution in a Low-Pressure Flat Flame”. J. Chem. Phys. 1954. 22(5): 824–830.

Abe, M.

Aldén, M.

A.L. Sahlberg, J. Zhou, M. Aldén, et al. “Investigation of Ro-Vibrational Spectra of Small Hydrocarbons at Elevated Temperatures Using Infrared Degenerate Four-Wave Mixing”. J. Raman Spectrosc. 2016. 47(9): 1130–1139.

C. Brackmann, J. Bood, M. Aldén, et al. “Quantitative Measurements of Species and Temperature in a DME-Air Counterflow Diffusion Flame Using Laser Diagnostic Methods”. Combust. Sci. Technol. 2006. 178(6): 1165–1184.

B. Löfstedt, R. Fritzon, M. Aldén. “Investigation of NO Detection in Flames by the Use of Polarization Spectroscopy”. Appl. Opt. 1996. 35(12): 2140–2146.

K. Nyholm, R. Fritzon, M. Aldén. “Two-Dimensional Imaging of OH in Flames by Use of Polarization Spectroscopy”. Opt. Lett. 1993. 18(19): 1672–1674.

Allen, N.D.C.

J.J. Harrison, N.D.C. Allen, P.F. Bernath. “Infrared Absorption Cross Sections for Ethane (C2H6) in the 3 µm Region”. J. Quant. Spectrosc. Radiat. Transfer. 2010. 111(3): 357–363.

Alrefae, M.

M. Alrefae, E.-T. Es-sebbar, A. Farooq. “Absorption Cross-Section Measurements of Methane, Ethane, Ethylene and Methanol at High Temperatures”. J. Mol. Spectrosc. 2014. 303(0): 8–14.

Aminoff, C.G.

K. Nyholm, M. Kaivola, C.G. Aminoff. “Polarization Spectroscopy Applied to C2 Detection in a Flame”. Appl. Phys. B: Lasers Opt. 1995. 60(1): 5–10.

K. Nyholm, R. Maier, C.G. Aminoff, et al. “Detection of OH in Flames by Using Polarization Spectroscopy”. Appl. Opt. 1993. 32(6): 919–924.

Atakan, B.

A.T. Hartlieb, B. Atakan, K. Kohse-Höinghaus. “Effects of a Sampling Quartz Nozzle on the Flame Structure of a Fuel-Rich Low-Pressure Propene Flame”. Combust. Flame. 2000. 121(4): 610–624.

A.T. Hartlieb, B. Atakan, K. Kohse-Hoinghaus. “Temperature Measurement in Fuel-Rich Non-Sooting Low-Pressure Hydrocarbon Flames”. Appl. Phys. B: Lasers Opt. 2000. 70(3): 435–445.

Barber, R.J.

L.S. Rothman, I.E. Gordon, R.J. Barber, et al. “HITEMP, the High-Temperature Molecular Spectroscopic Database”. J. Quant. Spectrosc. Radiat. Transfer. 2010. 111(15): 2139–2150.

Beale, C.A.

R.J. Hargreaves, C.A. Beale, L. Michaux, et al. “Hot Methane Line Lists for Exoplanet and Brown Dwarf Atmospheres”. Astrophys. J. 2012. 757(1): 46–55.

Bernath, P.F.

J.J. Harrison, N.D.C. Allen, P.F. Bernath. “Infrared Absorption Cross Sections for Ethane (C2H6) in the 3 µm Region”. J. Quant. Spectrosc. Radiat. Transfer. 2010. 111(3): 357–363.

Bood, J.

C. Brackmann, J. Bood, M. Aldén, et al. “Quantitative Measurements of Species and Temperature in a DME-Air Counterflow Diffusion Flame Using Laser Diagnostic Methods”. Combust. Sci. Technol. 2006. 178(6): 1165–1184.

Borggren, J.

J. Borggren, I.S. Burns, A.-L. Sahlberg, et al. “Temperature Imaging in Low-Pressure Flames Using Diode Laser Two-Line Atomic Fluorescence Employing a Novel Indium Seeding Technique”. Appl. Phys. B: Lasers Opt. 2016. 122(3): 1–8.

Brackmann, C.

C. Brackmann, J. Bood, M. Aldén, et al. “Quantitative Measurements of Species and Temperature in a DME-Air Counterflow Diffusion Flame Using Laser Diagnostic Methods”. Combust. Sci. Technol. 2006. 178(6): 1165–1184.

Bratfalean, R.

K. Bultitude, R. Bratfalean, P. Ewart. “Saturation Effects in Molecular Spectroscopy Using Degenerate Four-Wave Mixing”. J. Raman Spectrosc. 2003. 34(12): 1030–1036.

G.M. Lloyd, I.G. Hughes, R. Bratfalean, et al. “Broadband Degenerate Four-Wave Mixing of OH for Flame Thermometry”. Appl. Phys. B: Lasers Opt. 1998. 67(1): 107–113.

Bratfalean, R.T.

Brown, L.R.

L.R. Brown, D. Chris Benner, J.P. Champion, et al. “Methane Line Parameters in HITRAN”. J. Quant. Spectrosc. Radiat. Transfer. 2003. 82(1–4): 219–238.

Bultitude, K.

K. Bultitude, R. Bratfalean, P. Ewart. “Saturation Effects in Molecular Spectroscopy Using Degenerate Four-Wave Mixing”. J. Raman Spectrosc. 2003. 34(12): 1030–1036.

Burke, E.

R. Friedman, E. Burke. “Measurement of Temperature Distribution in a Low-Pressure Flat Flame”. J. Chem. Phys. 1954. 22(5): 824–830.

Burns, I.

I. Burns, N. Lamoureux, C. Kaminski, et al. “Diode Laser Atomic Fluorescence Temperature Measurements in Low-Pressure Flames”. Appl. Phys. B: Lasers Opt. 2008. 93(4): 907–914.

Burns, I.S.

J. Borggren, I.S. Burns, A.-L. Sahlberg, et al. “Temperature Imaging in Low-Pressure Flames Using Diode Laser Two-Line Atomic Fluorescence Employing a Novel Indium Seeding Technique”. Appl. Phys. B: Lasers Opt. 2016. 122(3): 1–8.

I.S. Burns, J. Hult, G. Hartung, et al. “A Thermometry Technique Based on Atomic Lineshapes Using Diode Laser LIF in Flames”. Proc. Combust. Inst. 2007. 31(1): 775–782.

Buzan, E.

R.J. Hargreaves, E. Buzan, M. Dulick, et al. “High-Resolution Absorption Cross Sections of C2H6 at Elevated Temperatures”. Mol. Astrophys. 2015. 1(1): 20–25.

Champion, J.P.

L.R. Brown, D. Chris Benner, J.P. Champion, et al. “Methane Line Parameters in HITRAN”. J. Quant. Spectrosc. Radiat. Transfer. 2003. 82(1–4): 219–238.

Chaos, M.

J. Wang, M. Chaos, B. Yang, et al. “Composition of Reaction Intermediates for Stoichiometric and Fuel-Rich Dimethyl Ether Flames: Flame-Sampling Mass Spectrometry and Modeling Studies”. Phys. Chem. Chem. Phys. 2009. 11(9): 1328–1339.

Z. Zhao, M. Chaos, A. Kazakov, et al. “Thermal Decomposition Reaction and a Comprehensive Kinetic Model of Dimethyl Ether”. Int. J. Chem. Kinet. 2008. 40(1): 1–18.

Chris Benner, D.

L.R. Brown, D. Chris Benner, J.P. Champion, et al. “Methane Line Parameters in HITRAN”. J. Quant. Spectrosc. Radiat. Transfer. 2003. 82(1–4): 219–238.

Cool, T.A.

K. Kohse-Höinghaus, P. Osswald, T.A. Cool, et al. “Biofuel Combustion Chemistry: From Ethanol to Biodiesel”. Angew. Chem. Int. Edit. 2010. 49(21): 3572–3597.

T.A. Cool, J. Wang, N. Hansen, et al. “Photoionization Mass Spectrometry and Modeling Studies of the Chemistry of Fuel-Rich Dimethyl Ether Flames”. Proc. Combust. Inst. 2007. 31(1): 285–293.

Dreier, T.

H. Latzel, A. Dreizler, T. Dreier, et al. “Thermal Grating and Broadband Degenerate Four-Wave Mixing Spectroscopy of OH in High-Pressure Flames”. Appl. Phys. B: Lasers Opt. 1998. 67(5): 667–673.

A.A. Suvernev, A. Dreizler, T. Dreier, et al. “Polarization-Spectroscopic Measurement and Spectral Simulation of OH (A2Σ–X2Π) and NH (A3Π–X3Σ) Transitions in Atmospheric-Pressure Flames”. Appl. Phys. B: Lasers Opt. 1995. 61(5): 421–427.

Dreizler, A.

H. Latzel, A. Dreizler, T. Dreier, et al. “Thermal Grating and Broadband Degenerate Four-Wave Mixing Spectroscopy of OH in High-Pressure Flames”. Appl. Phys. B: Lasers Opt. 1998. 67(5): 667–673.

A.A. Suvernev, A. Dreizler, T. Dreier, et al. “Polarization-Spectroscopic Measurement and Spectral Simulation of OH (A2Σ–X2Π) and NH (A3Π–X3Σ) Transitions in Atmospheric-Pressure Flames”. Appl. Phys. B: Lasers Opt. 1995. 61(5): 421–427.

Dulick, M.

R.J. Hargreaves, E. Buzan, M. Dulick, et al. “High-Resolution Absorption Cross Sections of C2H6 at Elevated Temperatures”. Mol. Astrophys. 2015. 1(1): 20–25.

Edwards, M.

B. Williams, M. Edwards, R. Stone, et al. “High Precision in-Cylinder Gas Thermometry Using Laser Induced Gratings: Quantitative Measurement of Evaporative Cooling with Gasoline/Alcohol Blends in a GDI Optical Engine”. Combust. Flame. 2014. 161(1): 270–279.

Es-sebbar, E.-T.

M. Alrefae, E.-T. Es-sebbar, A. Farooq. “Absorption Cross-Section Measurements of Methane, Ethane, Ethylene and Methanol at High Temperatures”. J. Mol. Spectrosc. 2014. 303(0): 8–14.

Ewart, P.

J. Kiefer, P. Ewart. “Laser Diagnostics and Minor Species Detection in Combustion using Resonant Four-Wave Mixing”. Prog. Energy Combust. Sci. 2011. 37(5): 525–564.

K. Richard, P. Ewart. “High-Resolution Infrared Polarization Spectroscopy and Degenerate Four Wave Mixing Spectroscopy of Methane”. Appl. Phys. B: Lasers Opt. 2009. 94(4): 715–723.

K. Bultitude, R. Bratfalean, P. Ewart. “Saturation Effects in Molecular Spectroscopy Using Degenerate Four-Wave Mixing”. J. Raman Spectrosc. 2003. 34(12): 1030–1036.

G.M. Lloyd, P. Ewart. “High Resolution Spectroscopy and Spectral Simulation of C2 Using Degenerate Four-Wave Mixing”. J. Chem. Phys. 1999. 110(1): 385–392.

R.T. Bratfalean, G.M. Lloyd, P. Ewart. “Degenerate Four-Wave Mixing for Arbitrary Pump and Probe Intensities”. J. Opt. Soc. Am. B. 1999. 16(6): 952–960.

P. Ewart, M. Kaczmarek. “Two-Dimensional Mapping of Temperature in a Flame by Degenerate Four-Wave Mixing in OH”. Appl. Opt. 1991. 30(27): 3996–4000.

Farooq, A.

M. Alrefae, E.-T. Es-sebbar, A. Farooq. “Absorption Cross-Section Measurements of Methane, Ethane, Ethylene and Methanol at High Temperatures”. J. Mol. Spectrosc. 2014. 303(0): 8–14.

Frederickson, K.

S.P. Kearney, K. Frederickson, T.W. Grasser. “Dual-Pump Coherent Anti-Stokes Raman Scattering Thermometry in a Sooting Turbulent Pool Fire”. Proc. Combust. Inst. 2009. 32(1): 871–878.

Friedman, R.

R. Friedman, E. Burke. “Measurement of Temperature Distribution in a Low-Pressure Flat Flame”. J. Chem. Phys. 1954. 22(5): 824–830.

Fritzon, R.

B. Löfstedt, R. Fritzon, M. Aldén. “Investigation of NO Detection in Flames by the Use of Polarization Spectroscopy”. Appl. Opt. 1996. 35(12): 2140–2146.

K. Nyholm, R. Fritzon, M. Aldén. “Two-Dimensional Imaging of OH in Flames by Use of Polarization Spectroscopy”. Opt. Lett. 1993. 18(19): 1672–1674.

Gord, J.R.

S. Roy, J.R. Gord, A.K. Patnaik. “Recent Advances in Coherent Anti-Stokes Raman Scattering Spectroscopy: Fundamental Developments and Applications in Reacting Flows”. Prog. Energy Combust. Sci. 2010. 36(2): 280–306.

Gordon, I.E.

I.E. Gordon, L.S. Rothman, C. Hill, et al. “The HITRAN2016 Molecular Spectroscopic Database”. J. Quant. Spectrosc. Radiat. Transfer. 2017. 203(1): 3–69.

L.S. Rothman, I.E. Gordon, R.J. Barber, et al. “HITEMP, the High-Temperature Molecular Spectroscopic Database”. J. Quant. Spectrosc. Radiat. Transfer. 2010. 111(15): 2139–2150.

Grasser, T.W.

S.P. Kearney, K. Frederickson, T.W. Grasser. “Dual-Pump Coherent Anti-Stokes Raman Scattering Thermometry in a Sooting Turbulent Pool Fire”. Proc. Combust. Inst. 2009. 32(1): 871–878.

Hanna, S.F.

J. Walewski, C.F. Kaminski, S.F. Hanna, et al. “Dependence of Partially Saturated Polarization Spectroscopy Signals on Pump Intensity and Collision Rate”. Phys. Rev. A. 2001. 64(6): 063816–063816.

Hänsch, T.W.

C. Wieman, T.W. Hänsch. “Doppler-Free Laser Polarization Spectroscopy”. Phys. Rev. Lett. 1976. 36(20): 1170–1170.

Hansen, N.

T.A. Cool, J. Wang, N. Hansen, et al. “Photoionization Mass Spectrometry and Modeling Studies of the Chemistry of Fuel-Rich Dimethyl Ether Flames”. Proc. Combust. Inst. 2007. 31(1): 285–293.

C.A. Taatjes, N. Hansen, A. McIlroy, et al. “Enols are Common Intermediates in Hydrocarbon Oxidation”. Science. 2005. 308(5730): 1887–1889.

Hanson, R.K.

M.P. Lee, B.K. McMillin, R.K. Hanson. “Temperature-Measurements in Gases by Use of Planar Laser-Induced Fluorescence Imaging of NO”. Appl. Opt. 1993. 32(27): 5379–5396.

Hargreaves, R.J.

R.J. Hargreaves, E. Buzan, M. Dulick, et al. “High-Resolution Absorption Cross Sections of C2H6 at Elevated Temperatures”. Mol. Astrophys. 2015. 1(1): 20–25.

R.J. Hargreaves, C.A. Beale, L. Michaux, et al. “Hot Methane Line Lists for Exoplanet and Brown Dwarf Atmospheres”. Astrophys. J. 2012. 757(1): 46–55.

Harrison, J.J.

J.J. Harrison, N.D.C. Allen, P.F. Bernath. “Infrared Absorption Cross Sections for Ethane (C2H6) in the 3 µm Region”. J. Quant. Spectrosc. Radiat. Transfer. 2010. 111(3): 357–363.

Hartlieb, A.T.

A.T. Hartlieb, B. Atakan, K. Kohse-Hoinghaus. “Temperature Measurement in Fuel-Rich Non-Sooting Low-Pressure Hydrocarbon Flames”. Appl. Phys. B: Lasers Opt. 2000. 70(3): 435–445.

A.T. Hartlieb, B. Atakan, K. Kohse-Höinghaus. “Effects of a Sampling Quartz Nozzle on the Flame Structure of a Fuel-Rich Low-Pressure Propene Flame”. Combust. Flame. 2000. 121(4): 610–624.

Hartung, G.

I.S. Burns, J. Hult, G. Hartung, et al. “A Thermometry Technique Based on Atomic Lineshapes Using Diode Laser LIF in Flames”. Proc. Combust. Inst. 2007. 31(1): 775–782.

Hill, C.

I.E. Gordon, L.S. Rothman, C. Hill, et al. “The HITRAN2016 Molecular Spectroscopic Database”. J. Quant. Spectrosc. Radiat. Transfer. 2017. 203(1): 3–69.

Hu, C.H.

Z.S. Li, C.H. Hu, J. Zetterberg, et al. “Midinfrared Polarization Spectroscopy of OH and Hot Water in Low Pressure Lean Premixed Flames”. J. Chem. Phys. 2007. 127(8): 084310–084310.

Hughes, I.G.

G.M. Lloyd, I.G. Hughes, R. Bratfalean, et al. “Broadband Degenerate Four-Wave Mixing of OH for Flame Thermometry”. Appl. Phys. B: Lasers Opt. 1998. 67(1): 107–113.

Hult, J.

I.S. Burns, J. Hult, G. Hartung, et al. “A Thermometry Technique Based on Atomic Lineshapes Using Diode Laser LIF in Flames”. Proc. Combust. Inst. 2007. 31(1): 775–782.

Hurley, M.D.

E.W. Kaiser, T.J. Wallington, M.D. Hurley, et al. “Experimental and Modeling Study of Premixed Atmospheric-Pressure Dimethyl Ether-Air Flames”. J. Phys. Chem. A. 2000. 104(35): 8194–8206.

Iwakuni, K.

Kaczmarek, M.

P. Ewart, M. Kaczmarek. “Two-Dimensional Mapping of Temperature in a Flame by Degenerate Four-Wave Mixing in OH”. Appl. Opt. 1991. 30(27): 3996–4000.

Kaiser, E.W.

E.W. Kaiser, T.J. Wallington, M.D. Hurley, et al. “Experimental and Modeling Study of Premixed Atmospheric-Pressure Dimethyl Ether-Air Flames”. J. Phys. Chem. A. 2000. 104(35): 8194–8206.

Kaivola, M.

K. Nyholm, M. Kaivola, C.G. Aminoff. “Polarization Spectroscopy Applied to C2 Detection in a Flame”. Appl. Phys. B: Lasers Opt. 1995. 60(1): 5–10.

Kaminski, C.

I. Burns, N. Lamoureux, C. Kaminski, et al. “Diode Laser Atomic Fluorescence Temperature Measurements in Low-Pressure Flames”. Appl. Phys. B: Lasers Opt. 2008. 93(4): 907–914.

Kaminski, C.F.

J. Walewski, C.F. Kaminski, S.F. Hanna, et al. “Dependence of Partially Saturated Polarization Spectroscopy Signals on Pump Intensity and Collision Rate”. Phys. Rev. A. 2001. 64(6): 063816–063816.

Kazakov, A.

Z. Zhao, M. Chaos, A. Kazakov, et al. “Thermal Decomposition Reaction and a Comprehensive Kinetic Model of Dimethyl Ether”. Int. J. Chem. Kinet. 2008. 40(1): 1–18.

Kearney, S.P.

S.P. Kearney, K. Frederickson, T.W. Grasser. “Dual-Pump Coherent Anti-Stokes Raman Scattering Thermometry in a Sooting Turbulent Pool Fire”. Proc. Combust. Inst. 2009. 32(1): 871–878.

Kiefer, J.

J. Kiefer, P. Ewart. “Laser Diagnostics and Minor Species Detection in Combustion using Resonant Four-Wave Mixing”. Prog. Energy Combust. Sci. 2011. 37(5): 525–564.

Kohse-Hoinghaus, K.

A.T. Hartlieb, B. Atakan, K. Kohse-Hoinghaus. “Temperature Measurement in Fuel-Rich Non-Sooting Low-Pressure Hydrocarbon Flames”. Appl. Phys. B: Lasers Opt. 2000. 70(3): 435–445.

Kohse-Höinghaus, K.

K. Kohse-Höinghaus, P. Osswald, T.A. Cool, et al. “Biofuel Combustion Chemistry: From Ethanol to Biodiesel”. Angew. Chem. Int. Edit. 2010. 49(21): 3572–3597.

A.T. Hartlieb, B. Atakan, K. Kohse-Höinghaus. “Effects of a Sampling Quartz Nozzle on the Flame Structure of a Fuel-Rich Low-Pressure Propene Flame”. Combust. Flame. 2000. 121(4): 610–624.

Konnov, A.A.

Z.W. Sun, Z.S. Li, A.A. Konnov, et al. “Quantitative HCN Measurements in CH4/N2O/O2/N2 Flames Using Mid-Infrared Polarization Spectroscopy”. Combust. Flame. 2011. 158(10): 1898–1904.

Lamoureux, N.

I. Burns, N. Lamoureux, C. Kaminski, et al. “Diode Laser Atomic Fluorescence Temperature Measurements in Low-Pressure Flames”. Appl. Phys. B: Lasers Opt. 2008. 93(4): 907–914.

Latzel, H.

H. Latzel, A. Dreizler, T. Dreier, et al. “Thermal Grating and Broadband Degenerate Four-Wave Mixing Spectroscopy of OH in High-Pressure Flames”. Appl. Phys. B: Lasers Opt. 1998. 67(5): 667–673.

Lee, M.P.

M.P. Lee, B.K. McMillin, R.K. Hanson. “Temperature-Measurements in Gases by Use of Planar Laser-Induced Fluorescence Imaging of NO”. Appl. Opt. 1993. 32(27): 5379–5396.

Li, B.

Z.W. Sun, Z.S. Li, B. Li, et al. “Flame Temperature Diagnostics with Water Lines Using Mid-Infrared Degenerate Four-Wave Mixing”. J. Raman Spectrosc. 2011. 42(10): 1828–1835.

Z.W. Sun, Z. Li, B. Li, et al. “Quantitative C2H2 Measurements in Sooty Flames Using Mid-Infrared Polarization Spectroscopy”. Appl. Phys. B: Lasers Opt. 2010. 101(1): 423–432.

Z.S. Li, Z.W. Sun, B. Li, et al. “Spatially Resolved Trace Detection of HCl in Flames with Mid-Infrared Polarization Spectroscopy”. Opt. Lett. 2008. 33(16): 1836–1838.

Li, Z.

Z.W. Sun, Z. Li, B. Li, et al. “Quantitative C2H2 Measurements in Sooty Flames Using Mid-Infrared Polarization Spectroscopy”. Appl. Phys. B: Lasers Opt. 2010. 101(1): 423–432.

Li, Z.S.

Z.W. Sun, Z.S. Li, A.A. Konnov, et al. “Quantitative HCN Measurements in CH4/N2O/O2/N2 Flames Using Mid-Infrared Polarization Spectroscopy”. Combust. Flame. 2011. 158(10): 1898–1904.

Z.W. Sun, Z.S. Li, B. Li, et al. “Flame Temperature Diagnostics with Water Lines Using Mid-Infrared Degenerate Four-Wave Mixing”. J. Raman Spectrosc. 2011. 42(10): 1828–1835.

Z.S. Li, Z.W. Sun, B. Li, et al. “Spatially Resolved Trace Detection of HCl in Flames with Mid-Infrared Polarization Spectroscopy”. Opt. Lett. 2008. 33(16): 1836–1838.

Z.S. Li, C.H. Hu, J. Zetterberg, et al. “Midinfrared Polarization Spectroscopy of OH and Hot Water in Low Pressure Lean Premixed Flames”. J. Chem. Phys. 2007. 127(8): 084310–084310.

Z.S. Li, M. Linvin, J. Zetterberg, et al. “Mid-Infrared Polarization Spectroscopy of C2H2: Non-Intrusive Spatial-Resolved Measurements of Polyatomic Hydrocarbon Molecules for Combustion Diagnostics”. Proc. Combust. Inst. 2007. 31(1): 817–824.

Z.S. Li, M. Rupinski, J. Zetterberg, et al. “Mid-Infrared Polarization Spectroscopy of Polyatomic Molecules: Detection of Nascent CO2 and H2O in Atmospheric Pressure Flames”. Chem. Phys. Lett. 2005. 407(4–6): 243–248.

Z.S. Li, M. Rupinski, J. Zetterberg, et al. “Mid-Infrared PS and LIF Detection of CH4 and C2H6 in Cold Flows and Flames at Atmospheric Pressure”. Proc. Combust. Inst. 2005. 30(1): 1629–1636.

Z.S. Li, M. Rupinski, J. Zetterberg, et al. “Detection of Methane with Mid-Infrared Polarization Spectroscopy”. Appl. Phys. B: Lasers Opt. 2004. 79(2): 135–138.

Linvin, M.

Z.S. Li, M. Linvin, J. Zetterberg, et al. “Mid-Infrared Polarization Spectroscopy of C2H2: Non-Intrusive Spatial-Resolved Measurements of Polyatomic Hydrocarbon Molecules for Combustion Diagnostics”. Proc. Combust. Inst. 2007. 31(1): 817–824.

Lloyd, G.M.

G.M. Lloyd, P. Ewart. “High Resolution Spectroscopy and Spectral Simulation of C2 Using Degenerate Four-Wave Mixing”. J. Chem. Phys. 1999. 110(1): 385–392.

R.T. Bratfalean, G.M. Lloyd, P. Ewart. “Degenerate Four-Wave Mixing for Arbitrary Pump and Probe Intensities”. J. Opt. Soc. Am. B. 1999. 16(6): 952–960.

G.M. Lloyd, I.G. Hughes, R. Bratfalean, et al. “Broadband Degenerate Four-Wave Mixing of OH for Flame Thermometry”. Appl. Phys. B: Lasers Opt. 1998. 67(1): 107–113.

Löfstedt, B.

B. Löfstedt, R. Fritzon, M. Aldén. “Investigation of NO Detection in Flames by the Use of Polarization Spectroscopy”. Appl. Opt. 1996. 35(12): 2140–2146.

Lucht, R.P.

A. Sane, A. Satija, R.P. Lucht, et al. “Simultaneous CO Concentration and Temperature Measurements Using Tunable Diode Laser Absorption Spectroscopy Near 2.3 µm”. Appl. Phys. B: Lasers Opt. 2014. 117(1): 7–18.

T.A. Reichardt, R.P. Lucht. “Theoretical Calculation of Line Shapes and Saturation Effects in Polarization Spectroscopy”. J. Chem. Phys. 1998. 109(14): 5830–5843.

Maier, R.

K. Nyholm, R. Maier, C.G. Aminoff, et al. “Detection of OH in Flames by Using Polarization Spectroscopy”. Appl. Opt. 1993. 32(6): 919–924.

McIlroy, A.

C.A. Taatjes, N. Hansen, A. McIlroy, et al. “Enols are Common Intermediates in Hydrocarbon Oxidation”. Science. 2005. 308(5730): 1887–1889.

McMillin, B.K.

M.P. Lee, B.K. McMillin, R.K. Hanson. “Temperature-Measurements in Gases by Use of Planar Laser-Induced Fluorescence Imaging of NO”. Appl. Opt. 1993. 32(27): 5379–5396.

Michaux, L.

R.J. Hargreaves, C.A. Beale, L. Michaux, et al. “Hot Methane Line Lists for Exoplanet and Brown Dwarf Atmospheres”. Astrophys. J. 2012. 757(1): 46–55.

Musick, M.

M. Musick, P.J. Van Tiggelen, J. Vandooren. “Experimental Study of the Structure of Several Fuel-Rich Premixed Flames of Methane, Oxygen, and Argon”. Combust. Flame. 1996. 105(4): 433–450.

Nyholm, K.

K. Nyholm, M. Kaivola, C.G. Aminoff. “Polarization Spectroscopy Applied to C2 Detection in a Flame”. Appl. Phys. B: Lasers Opt. 1995. 60(1): 5–10.

K. Nyholm, R. Maier, C.G. Aminoff, et al. “Detection of OH in Flames by Using Polarization Spectroscopy”. Appl. Opt. 1993. 32(6): 919–924.

K. Nyholm, R. Fritzon, M. Aldén. “Two-Dimensional Imaging of OH in Flames by Use of Polarization Spectroscopy”. Opt. Lett. 1993. 18(19): 1672–1674.

Okubo, S.

Osswald, P.

K. Kohse-Höinghaus, P. Osswald, T.A. Cool, et al. “Biofuel Combustion Chemistry: From Ethanol to Biodiesel”. Angew. Chem. Int. Edit. 2010. 49(21): 3572–3597.

Patnaik, A.K.

S. Roy, J.R. Gord, A.K. Patnaik. “Recent Advances in Coherent Anti-Stokes Raman Scattering Spectroscopy: Fundamental Developments and Applications in Reacting Flows”. Prog. Energy Combust. Sci. 2010. 36(2): 280–306.

Pine, A.S.

A.S. Pine. “High-Resolution Methane ν3-Band Spectra Using a Stabilized Tunable Difference-Frequency Laser System”. J. Opt. Soc. Am. 1976. 66(2): 97–108.

Reichardt, T.A.

T.A. Reichardt, R.P. Lucht. “Theoretical Calculation of Line Shapes and Saturation Effects in Polarization Spectroscopy”. J. Chem. Phys. 1998. 109(14): 5830–5843.

Richard, K.

K. Richard, P. Ewart. “High-Resolution Infrared Polarization Spectroscopy and Degenerate Four Wave Mixing Spectroscopy of Methane”. Appl. Phys. B: Lasers Opt. 2009. 94(4): 715–723.

Rothman, L.S.

I.E. Gordon, L.S. Rothman, C. Hill, et al. “The HITRAN2016 Molecular Spectroscopic Database”. J. Quant. Spectrosc. Radiat. Transfer. 2017. 203(1): 3–69.

L.S. Rothman, I.E. Gordon, R.J. Barber, et al. “HITEMP, the High-Temperature Molecular Spectroscopic Database”. J. Quant. Spectrosc. Radiat. Transfer. 2010. 111(15): 2139–2150.

Roy, S.

S. Roy, J.R. Gord, A.K. Patnaik. “Recent Advances in Coherent Anti-Stokes Raman Scattering Spectroscopy: Fundamental Developments and Applications in Reacting Flows”. Prog. Energy Combust. Sci. 2010. 36(2): 280–306.

Rupinski, M.

Z.S. Li, M. Rupinski, J. Zetterberg, et al. “Mid-Infrared Polarization Spectroscopy of Polyatomic Molecules: Detection of Nascent CO2 and H2O in Atmospheric Pressure Flames”. Chem. Phys. Lett. 2005. 407(4–6): 243–248.

Z.S. Li, M. Rupinski, J. Zetterberg, et al. “Mid-Infrared PS and LIF Detection of CH4 and C2H6 in Cold Flows and Flames at Atmospheric Pressure”. Proc. Combust. Inst. 2005. 30(1): 1629–1636.

Z.S. Li, M. Rupinski, J. Zetterberg, et al. “Detection of Methane with Mid-Infrared Polarization Spectroscopy”. Appl. Phys. B: Lasers Opt. 2004. 79(2): 135–138.

Sahlberg, A.L.

A.L. Sahlberg, J. Zhou, M. Aldén, et al. “Investigation of Ro-Vibrational Spectra of Small Hydrocarbons at Elevated Temperatures Using Infrared Degenerate Four-Wave Mixing”. J. Raman Spectrosc. 2016. 47(9): 1130–1139.

Sahlberg, A.-L.

J. Borggren, I.S. Burns, A.-L. Sahlberg, et al. “Temperature Imaging in Low-Pressure Flames Using Diode Laser Two-Line Atomic Fluorescence Employing a Novel Indium Seeding Technique”. Appl. Phys. B: Lasers Opt. 2016. 122(3): 1–8.

Sane, A.

A. Sane, A. Satija, R.P. Lucht, et al. “Simultaneous CO Concentration and Temperature Measurements Using Tunable Diode Laser Absorption Spectroscopy Near 2.3 µm”. Appl. Phys. B: Lasers Opt. 2014. 117(1): 7–18.

Satija, A.

A. Sane, A. Satija, R.P. Lucht, et al. “Simultaneous CO Concentration and Temperature Measurements Using Tunable Diode Laser Absorption Spectroscopy Near 2.3 µm”. Appl. Phys. B: Lasers Opt. 2014. 117(1): 7–18.

Stone, R.

B. Williams, M. Edwards, R. Stone, et al. “High Precision in-Cylinder Gas Thermometry Using Laser Induced Gratings: Quantitative Measurement of Evaporative Cooling with Gasoline/Alcohol Blends in a GDI Optical Engine”. Combust. Flame. 2014. 161(1): 270–279.

Sun, Z.W.

Z.W. Sun, Z.S. Li, B. Li, et al. “Flame Temperature Diagnostics with Water Lines Using Mid-Infrared Degenerate Four-Wave Mixing”. J. Raman Spectrosc. 2011. 42(10): 1828–1835.

Z.W. Sun, Z.S. Li, A.A. Konnov, et al. “Quantitative HCN Measurements in CH4/N2O/O2/N2 Flames Using Mid-Infrared Polarization Spectroscopy”. Combust. Flame. 2011. 158(10): 1898–1904.

Z.W. Sun, Z. Li, B. Li, et al. “Quantitative C2H2 Measurements in Sooty Flames Using Mid-Infrared Polarization Spectroscopy”. Appl. Phys. B: Lasers Opt. 2010. 101(1): 423–432.

Z.S. Li, Z.W. Sun, B. Li, et al. “Spatially Resolved Trace Detection of HCl in Flames with Mid-Infrared Polarization Spectroscopy”. Opt. Lett. 2008. 33(16): 1836–1838.

Suvernev, A.A.

A.A. Suvernev, A. Dreizler, T. Dreier, et al. “Polarization-Spectroscopic Measurement and Spectral Simulation of OH (A2Σ–X2Π) and NH (A3Π–X3Σ) Transitions in Atmospheric-Pressure Flames”. Appl. Phys. B: Lasers Opt. 1995. 61(5): 421–427.

Taatjes, C.A.

C.A. Taatjes, N. Hansen, A. McIlroy, et al. “Enols are Common Intermediates in Hydrocarbon Oxidation”. Science. 2005. 308(5730): 1887–1889.

Van Tiggelen, P.J.

M. Musick, P.J. Van Tiggelen, J. Vandooren. “Experimental Study of the Structure of Several Fuel-Rich Premixed Flames of Methane, Oxygen, and Argon”. Combust. Flame. 1996. 105(4): 433–450.

Vandooren, J.

M. Musick, P.J. Van Tiggelen, J. Vandooren. “Experimental Study of the Structure of Several Fuel-Rich Premixed Flames of Methane, Oxygen, and Argon”. Combust. Flame. 1996. 105(4): 433–450.

Walewski, J.

J. Walewski, C.F. Kaminski, S.F. Hanna, et al. “Dependence of Partially Saturated Polarization Spectroscopy Signals on Pump Intensity and Collision Rate”. Phys. Rev. A. 2001. 64(6): 063816–063816.

Wallington, T.J.

E.W. Kaiser, T.J. Wallington, M.D. Hurley, et al. “Experimental and Modeling Study of Premixed Atmospheric-Pressure Dimethyl Ether-Air Flames”. J. Phys. Chem. A. 2000. 104(35): 8194–8206.

Wang, J.

J. Wang, M. Chaos, B. Yang, et al. “Composition of Reaction Intermediates for Stoichiometric and Fuel-Rich Dimethyl Ether Flames: Flame-Sampling Mass Spectrometry and Modeling Studies”. Phys. Chem. Chem. Phys. 2009. 11(9): 1328–1339.

T.A. Cool, J. Wang, N. Hansen, et al. “Photoionization Mass Spectrometry and Modeling Studies of the Chemistry of Fuel-Rich Dimethyl Ether Flames”. Proc. Combust. Inst. 2007. 31(1): 285–293.

Wieman, C.

C. Wieman, T.W. Hänsch. “Doppler-Free Laser Polarization Spectroscopy”. Phys. Rev. Lett. 1976. 36(20): 1170–1170.

Williams, B.

B. Williams, M. Edwards, R. Stone, et al. “High Precision in-Cylinder Gas Thermometry Using Laser Induced Gratings: Quantitative Measurement of Evaporative Cooling with Gasoline/Alcohol Blends in a GDI Optical Engine”. Combust. Flame. 2014. 161(1): 270–279.

Yang, B.

J. Wang, M. Chaos, B. Yang, et al. “Composition of Reaction Intermediates for Stoichiometric and Fuel-Rich Dimethyl Ether Flames: Flame-Sampling Mass Spectrometry and Modeling Studies”. Phys. Chem. Chem. Phys. 2009. 11(9): 1328–1339.

Zetterberg, J.

Z.S. Li, C.H. Hu, J. Zetterberg, et al. “Midinfrared Polarization Spectroscopy of OH and Hot Water in Low Pressure Lean Premixed Flames”. J. Chem. Phys. 2007. 127(8): 084310–084310.

Z.S. Li, M. Linvin, J. Zetterberg, et al. “Mid-Infrared Polarization Spectroscopy of C2H2: Non-Intrusive Spatial-Resolved Measurements of Polyatomic Hydrocarbon Molecules for Combustion Diagnostics”. Proc. Combust. Inst. 2007. 31(1): 817–824.

Z.S. Li, M. Rupinski, J. Zetterberg, et al. “Mid-Infrared PS and LIF Detection of CH4 and C2H6 in Cold Flows and Flames at Atmospheric Pressure”. Proc. Combust. Inst. 2005. 30(1): 1629–1636.

Z.S. Li, M. Rupinski, J. Zetterberg, et al. “Mid-Infrared Polarization Spectroscopy of Polyatomic Molecules: Detection of Nascent CO2 and H2O in Atmospheric Pressure Flames”. Chem. Phys. Lett. 2005. 407(4–6): 243–248.

Z.S. Li, M. Rupinski, J. Zetterberg, et al. “Detection of Methane with Mid-Infrared Polarization Spectroscopy”. Appl. Phys. B: Lasers Opt. 2004. 79(2): 135–138.

Zhao, Z.

Z. Zhao, M. Chaos, A. Kazakov, et al. “Thermal Decomposition Reaction and a Comprehensive Kinetic Model of Dimethyl Ether”. Int. J. Chem. Kinet. 2008. 40(1): 1–18.

Zhou, J.

A.L. Sahlberg, J. Zhou, M. Aldén, et al. “Investigation of Ro-Vibrational Spectra of Small Hydrocarbons at Elevated Temperatures Using Infrared Degenerate Four-Wave Mixing”. J. Raman Spectrosc. 2016. 47(9): 1130–1139.

Angew. Chem. Int. Edit (1)

K. Kohse-Höinghaus, P. Osswald, T.A. Cool, et al. “Biofuel Combustion Chemistry: From Ethanol to Biodiesel”. Angew. Chem. Int. Edit. 2010. 49(21): 3572–3597.

Appl. Opt (4)

K. Nyholm, R. Maier, C.G. Aminoff, et al. “Detection of OH in Flames by Using Polarization Spectroscopy”. Appl. Opt. 1993. 32(6): 919–924.

B. Löfstedt, R. Fritzon, M. Aldén. “Investigation of NO Detection in Flames by the Use of Polarization Spectroscopy”. Appl. Opt. 1996. 35(12): 2140–2146.

M.P. Lee, B.K. McMillin, R.K. Hanson. “Temperature-Measurements in Gases by Use of Planar Laser-Induced Fluorescence Imaging of NO”. Appl. Opt. 1993. 32(27): 5379–5396.

P. Ewart, M. Kaczmarek. “Two-Dimensional Mapping of Temperature in a Flame by Degenerate Four-Wave Mixing in OH”. Appl. Opt. 1991. 30(27): 3996–4000.

Appl. Phys. B: Lasers Opt (11)

G.M. Lloyd, I.G. Hughes, R. Bratfalean, et al. “Broadband Degenerate Four-Wave Mixing of OH for Flame Thermometry”. Appl. Phys. B: Lasers Opt. 1998. 67(1): 107–113.

H. Latzel, A. Dreizler, T. Dreier, et al. “Thermal Grating and Broadband Degenerate Four-Wave Mixing Spectroscopy of OH in High-Pressure Flames”. Appl. Phys. B: Lasers Opt. 1998. 67(5): 667–673.

A. Sane, A. Satija, R.P. Lucht, et al. “Simultaneous CO Concentration and Temperature Measurements Using Tunable Diode Laser Absorption Spectroscopy Near 2.3 µm”. Appl. Phys. B: Lasers Opt. 2014. 117(1): 7–18.

K. Richard, P. Ewart. “High-Resolution Infrared Polarization Spectroscopy and Degenerate Four Wave Mixing Spectroscopy of Methane”. Appl. Phys. B: Lasers Opt. 2009. 94(4): 715–723.

A.T. Hartlieb, B. Atakan, K. Kohse-Hoinghaus. “Temperature Measurement in Fuel-Rich Non-Sooting Low-Pressure Hydrocarbon Flames”. Appl. Phys. B: Lasers Opt. 2000. 70(3): 435–445.

I. Burns, N. Lamoureux, C. Kaminski, et al. “Diode Laser Atomic Fluorescence Temperature Measurements in Low-Pressure Flames”. Appl. Phys. B: Lasers Opt. 2008. 93(4): 907–914.

J. Borggren, I.S. Burns, A.-L. Sahlberg, et al. “Temperature Imaging in Low-Pressure Flames Using Diode Laser Two-Line Atomic Fluorescence Employing a Novel Indium Seeding Technique”. Appl. Phys. B: Lasers Opt. 2016. 122(3): 1–8.

Z.W. Sun, Z. Li, B. Li, et al. “Quantitative C2H2 Measurements in Sooty Flames Using Mid-Infrared Polarization Spectroscopy”. Appl. Phys. B: Lasers Opt. 2010. 101(1): 423–432.

Z.S. Li, M. Rupinski, J. Zetterberg, et al. “Detection of Methane with Mid-Infrared Polarization Spectroscopy”. Appl. Phys. B: Lasers Opt. 2004. 79(2): 135–138.

K. Nyholm, M. Kaivola, C.G. Aminoff. “Polarization Spectroscopy Applied to C2 Detection in a Flame”. Appl. Phys. B: Lasers Opt. 1995. 60(1): 5–10.

A.A. Suvernev, A. Dreizler, T. Dreier, et al. “Polarization-Spectroscopic Measurement and Spectral Simulation of OH (A2Σ–X2Π) and NH (A3Π–X3Σ) Transitions in Atmospheric-Pressure Flames”. Appl. Phys. B: Lasers Opt. 1995. 61(5): 421–427.

Astrophys. J (1)

R.J. Hargreaves, C.A. Beale, L. Michaux, et al. “Hot Methane Line Lists for Exoplanet and Brown Dwarf Atmospheres”. Astrophys. J. 2012. 757(1): 46–55.

Chem. Phys. Lett (1)

Z.S. Li, M. Rupinski, J. Zetterberg, et al. “Mid-Infrared Polarization Spectroscopy of Polyatomic Molecules: Detection of Nascent CO2 and H2O in Atmospheric Pressure Flames”. Chem. Phys. Lett. 2005. 407(4–6): 243–248.

Combust. Flame (4)

M. Musick, P.J. Van Tiggelen, J. Vandooren. “Experimental Study of the Structure of Several Fuel-Rich Premixed Flames of Methane, Oxygen, and Argon”. Combust. Flame. 1996. 105(4): 433–450.

A.T. Hartlieb, B. Atakan, K. Kohse-Höinghaus. “Effects of a Sampling Quartz Nozzle on the Flame Structure of a Fuel-Rich Low-Pressure Propene Flame”. Combust. Flame. 2000. 121(4): 610–624.

Z.W. Sun, Z.S. Li, A.A. Konnov, et al. “Quantitative HCN Measurements in CH4/N2O/O2/N2 Flames Using Mid-Infrared Polarization Spectroscopy”. Combust. Flame. 2011. 158(10): 1898–1904.

B. Williams, M. Edwards, R. Stone, et al. “High Precision in-Cylinder Gas Thermometry Using Laser Induced Gratings: Quantitative Measurement of Evaporative Cooling with Gasoline/Alcohol Blends in a GDI Optical Engine”. Combust. Flame. 2014. 161(1): 270–279.

Combust. Sci. Technol (1)

C. Brackmann, J. Bood, M. Aldén, et al. “Quantitative Measurements of Species and Temperature in a DME-Air Counterflow Diffusion Flame Using Laser Diagnostic Methods”. Combust. Sci. Technol. 2006. 178(6): 1165–1184.

Int. J. Chem. Kinet (1)

Z. Zhao, M. Chaos, A. Kazakov, et al. “Thermal Decomposition Reaction and a Comprehensive Kinetic Model of Dimethyl Ether”. Int. J. Chem. Kinet. 2008. 40(1): 1–18.

J. Chem. Phys (4)

T.A. Reichardt, R.P. Lucht. “Theoretical Calculation of Line Shapes and Saturation Effects in Polarization Spectroscopy”. J. Chem. Phys. 1998. 109(14): 5830–5843.

Z.S. Li, C.H. Hu, J. Zetterberg, et al. “Midinfrared Polarization Spectroscopy of OH and Hot Water in Low Pressure Lean Premixed Flames”. J. Chem. Phys. 2007. 127(8): 084310–084310.

G.M. Lloyd, P. Ewart. “High Resolution Spectroscopy and Spectral Simulation of C2 Using Degenerate Four-Wave Mixing”. J. Chem. Phys. 1999. 110(1): 385–392.

R. Friedman, E. Burke. “Measurement of Temperature Distribution in a Low-Pressure Flat Flame”. J. Chem. Phys. 1954. 22(5): 824–830.

J. Mol. Spectrosc (1)

M. Alrefae, E.-T. Es-sebbar, A. Farooq. “Absorption Cross-Section Measurements of Methane, Ethane, Ethylene and Methanol at High Temperatures”. J. Mol. Spectrosc. 2014. 303(0): 8–14.

J. Opt. Soc. Am (1)

A.S. Pine. “High-Resolution Methane ν3-Band Spectra Using a Stabilized Tunable Difference-Frequency Laser System”. J. Opt. Soc. Am. 1976. 66(2): 97–108.

J. Opt. Soc. Am. B (2)

J. Phys. Chem. A (1)

E.W. Kaiser, T.J. Wallington, M.D. Hurley, et al. “Experimental and Modeling Study of Premixed Atmospheric-Pressure Dimethyl Ether-Air Flames”. J. Phys. Chem. A. 2000. 104(35): 8194–8206.

J. Quant. Spectrosc. Radiat. Transfer (4)

I.E. Gordon, L.S. Rothman, C. Hill, et al. “The HITRAN2016 Molecular Spectroscopic Database”. J. Quant. Spectrosc. Radiat. Transfer. 2017. 203(1): 3–69.

L.S. Rothman, I.E. Gordon, R.J. Barber, et al. “HITEMP, the High-Temperature Molecular Spectroscopic Database”. J. Quant. Spectrosc. Radiat. Transfer. 2010. 111(15): 2139–2150.

J.J. Harrison, N.D.C. Allen, P.F. Bernath. “Infrared Absorption Cross Sections for Ethane (C2H6) in the 3 µm Region”. J. Quant. Spectrosc. Radiat. Transfer. 2010. 111(3): 357–363.

L.R. Brown, D. Chris Benner, J.P. Champion, et al. “Methane Line Parameters in HITRAN”. J. Quant. Spectrosc. Radiat. Transfer. 2003. 82(1–4): 219–238.

J. Raman Spectrosc (3)

A.L. Sahlberg, J. Zhou, M. Aldén, et al. “Investigation of Ro-Vibrational Spectra of Small Hydrocarbons at Elevated Temperatures Using Infrared Degenerate Four-Wave Mixing”. J. Raman Spectrosc. 2016. 47(9): 1130–1139.

K. Bultitude, R. Bratfalean, P. Ewart. “Saturation Effects in Molecular Spectroscopy Using Degenerate Four-Wave Mixing”. J. Raman Spectrosc. 2003. 34(12): 1030–1036.

Z.W. Sun, Z.S. Li, B. Li, et al. “Flame Temperature Diagnostics with Water Lines Using Mid-Infrared Degenerate Four-Wave Mixing”. J. Raman Spectrosc. 2011. 42(10): 1828–1835.

Mol. Astrophys (1)

R.J. Hargreaves, E. Buzan, M. Dulick, et al. “High-Resolution Absorption Cross Sections of C2H6 at Elevated Temperatures”. Mol. Astrophys. 2015. 1(1): 20–25.

Opt. Lett (2)

Z.S. Li, Z.W. Sun, B. Li, et al. “Spatially Resolved Trace Detection of HCl in Flames with Mid-Infrared Polarization Spectroscopy”. Opt. Lett. 2008. 33(16): 1836–1838.

K. Nyholm, R. Fritzon, M. Aldén. “Two-Dimensional Imaging of OH in Flames by Use of Polarization Spectroscopy”. Opt. Lett. 1993. 18(19): 1672–1674.

Phys. Chem. Chem. Phys (1)

J. Wang, M. Chaos, B. Yang, et al. “Composition of Reaction Intermediates for Stoichiometric and Fuel-Rich Dimethyl Ether Flames: Flame-Sampling Mass Spectrometry and Modeling Studies”. Phys. Chem. Chem. Phys. 2009. 11(9): 1328–1339.

Phys. Rev. A (1)

J. Walewski, C.F. Kaminski, S.F. Hanna, et al. “Dependence of Partially Saturated Polarization Spectroscopy Signals on Pump Intensity and Collision Rate”. Phys. Rev. A. 2001. 64(6): 063816–063816.

Phys. Rev. Lett (1)

C. Wieman, T.W. Hänsch. “Doppler-Free Laser Polarization Spectroscopy”. Phys. Rev. Lett. 1976. 36(20): 1170–1170.

Proc. Combust. Inst (5)

T.A. Cool, J. Wang, N. Hansen, et al. “Photoionization Mass Spectrometry and Modeling Studies of the Chemistry of Fuel-Rich Dimethyl Ether Flames”. Proc. Combust. Inst. 2007. 31(1): 285–293.

Z.S. Li, M. Rupinski, J. Zetterberg, et al. “Mid-Infrared PS and LIF Detection of CH4 and C2H6 in Cold Flows and Flames at Atmospheric Pressure”. Proc. Combust. Inst. 2005. 30(1): 1629–1636.

Z.S. Li, M. Linvin, J. Zetterberg, et al. “Mid-Infrared Polarization Spectroscopy of C2H2: Non-Intrusive Spatial-Resolved Measurements of Polyatomic Hydrocarbon Molecules for Combustion Diagnostics”. Proc. Combust. Inst. 2007. 31(1): 817–824.

S.P. Kearney, K. Frederickson, T.W. Grasser. “Dual-Pump Coherent Anti-Stokes Raman Scattering Thermometry in a Sooting Turbulent Pool Fire”. Proc. Combust. Inst. 2009. 32(1): 871–878.

I.S. Burns, J. Hult, G. Hartung, et al. “A Thermometry Technique Based on Atomic Lineshapes Using Diode Laser LIF in Flames”. Proc. Combust. Inst. 2007. 31(1): 775–782.

Prog. Energy Combust. Sci (2)

J. Kiefer, P. Ewart. “Laser Diagnostics and Minor Species Detection in Combustion using Resonant Four-Wave Mixing”. Prog. Energy Combust. Sci. 2011. 37(5): 525–564.

S. Roy, J.R. Gord, A.K. Patnaik. “Recent Advances in Coherent Anti-Stokes Raman Scattering Spectroscopy: Fundamental Developments and Applications in Reacting Flows”. Prog. Energy Combust. Sci. 2010. 36(2): 280–306.

Science (1)

C.A. Taatjes, N. Hansen, A. McIlroy, et al. “Enols are Common Intermediates in Hydrocarbon Oxidation”. Science. 2005. 308(5730): 1887–1889.

Other (6)

N. Hansen, R.S. Tranter, J.B. Randazzo, et al. “Investigation of Sampling-Probe Distorted Temperature Fields with X-ray Fluorescence Spectroscopy”. Proc. Combust. Inst. 2018. DOI: 10.1016/j.proci.2018.05.034.

R.J. Kee, F.M. Rupley, J.A. Miller. “Chemkin-II: A Fortran Chemical Kinetic Package for the Analysis of Gas Phase Chemical Kinetics”. Sandia National Laboratories Report. Livermore, CA: Sandia National Laboratories, 1991.

W. Demtröder. “Polarization spectroscopy”. In: Laser Spectroscopy: Basic Concepts and Instrumentation. Berlin, Heidelberg, Germany: Springer-Verlag, 2008. 4th ed. Vol. 2, Chap. 2.4, Pp. 108–109.

R.E. Teets, F.V. Kowalski, W.T. Hill, et al. “Laser Polarization Spectroscopy”. In: A.H. Zewail, editor. Advances in Laser Spectroscopy I. Proc. SPIE. 1977. 0013: 80–87.

S.R. Turns. “Chemical Kinetics”. In: An Introduction to Combustion: Concepts and Applications. Singapore: McGraw-Hill Higher Education, 2006. Vol. 1, Chap. 4, Pp. 114–115.

Z.W. Sun. Development and Application of Non-Linear Mid-Infrared Laser Spectroscopy for Combustion Diagnostics. [PhD thesis]. Media Tryck AB, Lund, Sweden. Lund University, 2012.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.