Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Process Pattern-Based Near-Infrared Spectroscopy (NIRS) Fault Detection Using a Potential Function

Not Accessible

Your library or personal account may give you access

Abstract

This paper proposes a near-infrared (NIR) fault detection technology based on a process pattern via a potential function. Near-infrared spectroscopy is used to acquire process information at the molecular level. In this study, the process pattern concept is first introduced in the field of process control and a process pattern construction method based on elastic net-PCA is put forth. Next, the potential function discriminant method is applied to distinguish and classify the constructed process pattern and identify the running state of the industrial system. Finally, the proposed method is verified and analyzed using spectra data of the crude oil desalination and dehydration process. Compared with existing fault detection methods, the proposed approach offers the following advantages: (1) potential function discrimination achieves nonlinear process classification with better fault detection accuracy and good visualization performance; (2) fault detection based on NIR spectra is faster with and possesses greater accuracy because it acquires process information from a microscopic molecular perspective; and (3) the process pattern contains more effective process information and can more comprehensively characterize the essential features of processes.

© 2019 The Author(s)

PDF Article
More Like This
Rapid determination of the main components of corn based on near-infrared spectroscopy and a BiPLS-PCA-ELM model

Lili Xu, Jinming Liu, Chunqi Wang, Zhijiang Li, and Dongjie Zhang
Appl. Opt. 62(11) 2756-2765 (2023)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.