Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 73,
  • Issue 3,
  • pp. 271-283
  • (2019)

Long-Term Strategy for Assessing Carbonaceous Particulate Matter Concentrations from Multiple Fourier Transform Infrared (FT-IR) Instruments: Influence of Spectral Dissimilarities on Multivariate Calibration Performance

Not Accessible

Your library or personal account may give you access

Abstract

Matching the spectral response between multiple spectrometers is a mandatory procedure when developing robust calibrations whose prediction is independent of instrument-related signal variations. A viable alternative to complex calibration transfer methods consists of matching the instrument spectral response by controlling a set of key instrumental and environmental parameters. This paper discusses the applicability of such an approach to three Fourier transform infrared (FT-IR) spectrometers used for the routine assessment of carbonaceous particulate matter concentrations in the Interagency Monitoring of PROtected Visual Environments (IMPROVE) speciation network. The effectiveness of the proposed matching procedure is evaluated by comparing the spectral response for each individual instrument in order to characterize the extent, and nature, of the remaining inter-instrument spectral dissimilarities. Instrument-related contributions to the signal were determined to be small compared with the spectral variability induced by the filter type used for sample collection. The impact of spectral differences on prediction was addressed through the comparison of model performance derived from multiple calibration scenarios. A hybrid model yielding accurate and homogeneous prediction regardless of the instrument was proposed for organic carbon (OC) and elemental carbon (EC), two major constituents of atmospheric particulate matter. Coefficients of determination of 0.98 (OC) and 0.90 (EC) with median biases not exceeding 0.20 µg (OC) and 0.07 µg (EC) are reported. The long-term stability, assessed from weekly measurements of reference samples, shows a deviation in predicted concentrations of less than ±5% over a 2.5-year period for most of the data collected. Extending OC and EC hybrid models to the prediction of ambient samples collected during the two subsequent years provides satisfactory performance. The proposed instrument matching procedure coupled with the relative simplicity of the hybrid model is an alternative to computationally advanced calibration transfer methodologies for the characterization of carbonaceous particulate matter using multiple FT-IR instruments.

© 2018 The Author(s)

PDF Article
More Like This
Application of Fourier transform infrared ellipsometry to assess the concentration of biological molecules

Enric Garcia-Caurel, Bernard Drévillon, Antonello De Martino, and Laurent Schwartz
Appl. Opt. 41(34) 7339-7345 (2002)

Evaluation of univariate and multivariate calibration strategies for the direct determination of total carbon in soils by laser-induced breakdown spectroscopy: tutorial

Wesley Nascimento Guedes, Diego Victor Babos, Vinícius Câmara Costa, Carla Pereira De Morais, Vitor da Silveira Freitas, Kleydson Stenio, Alfredo Augusto Pereira Xavier, Luís Carlos Leva Borduchi, Paulino Ribeiro Villas-Boas, and Débora Marcondes Bastos Pereira Milori
J. Opt. Soc. Am. B 40(5) 1319-1330 (2023)

Fourier transform infrared spectroscopy of size-segregated aerosol deposits on foil substrates

Judith A. Hopey, Kirk A. Fuller, Venkataramanan Krishnaswamy, David Bowdle, and Michael J. Newchurch
Appl. Opt. 47(13) 2266-2274 (2008)

Supplementary Material (1)

NameDescription
Supplement 1       Supplemental file.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.