Abstract

The Department of Defense (DOD) and first responder communities are evaluating and developing optical systems for the detection and identification of explosives and components used for assembling homemade explosives (HMEs). Emerging detection technologies must be evaluated with authentic hazard material concentrations to ensure their accurate and reliable use in the field. In this work, infrared (IR) reflectance spectra over the spectral rage of 1000–1700 cm–1 were collected for different concentrations of inkjet-printed RDX (cyclotrimethylenetrinitramine) samples deposited onto aluminum substrates. A plot of the integrated area of both the symmetric and asymmetric NO2 vibrational bands for RDX on aluminum exhibited good linearity over the concentration range 20–500 µg/cm2. Detection limits for RDX on an aluminum surface were calculated to be 10.7 µg/cm2 for the symmetric NO2 vibrational band and 1.4 µg/cm2 for the asymmetric NO2 vibrational band. Evaluation of the NO2 vibrational band areas at different locations of the RDX array demonstrated that the samples exhibited good homogeneity across the surface. The concentration of an unknown sample of RDX on aluminum was determined using the fitted equations; results showed good agreement between the calculated and actual RDX surface concentration. The lot-to-lot variation of RDX on the aluminum surface was compared using the long wavelength infrared (LWIR) spectral band areas for two different lots of standards printed at the same RDX surface concentration. Results showed excellent lot-to-lot agreement indicating good reproducibility of the standards for RDX.

© 2018 The Author(s)

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription