Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 73,
  • Issue 2,
  • pp. 163-170
  • (2019)

Detecting Temporal Changes of Self-Absorption in a Laser-Induced Copper Plasma from Time-Resolved Photomultiplier Signal Emission Profiles

Not Accessible

Your library or personal account may give you access

Abstract

This work reports an investigation on the feasibility of using a photomultiplier tube (PMT) to follow the time evolution of self-absorption of copper resonance transitions at 324.7 nm and 327.4 nm. The plasma was obtained by focusing a Nd:YAG laser, operated at 1064 nm, on a series of aluminum alloy standard disks containing different copper concentrations. The results described have been obtained at different times and with different set-ups. These set-ups consisted of a Paschen–Runge polychromator, a LIBS 2000 spectrometer, and a spectrometer equipped with both an intensified charge-coupled device (ICCD) and PMT. Both PMT signals and time-resolved spectra were obtained and the ratio of the two Cu resonant lines was calculated, compared, and discussed. By selecting different delay times and integration gates of the PMT signals, the self-absorption effect of the Cu resonant lines was found to be changing, implying that, by careful selection of the integration window of PMT signals, the self-absorption may be minimized, thus improving the calibration linearity of the technique.

© 2018 The Author(s)

PDF Article
More Like This
Investigation of the self-absorption effect using time-resolved laser-induced breakdown spectroscopy

Yun Tang, Shixiang Ma, Yanwu Chu, Tao Wu, Yuyang Ma, Zhenlin Hu, Lianbo Guo, Xiaoyan Zeng, Jun Duan, and Yongfeng Lu
Opt. Express 27(4) 4261-4270 (2019)

Comparative study on self-absorption of laser-induced tungsten plasma in air and in argon

Ran Hai, Zhonglin He, Xiao Yu, Liying Sun, Ding Wu, and Hongbin Ding
Opt. Express 27(3) 2509-2520 (2019)

Optical emission enhancement of laser-produced copper plasma under a steady magnetic field

Yu Li, Changhong Hu, Hanzhuang Zhang, Zhankui Jiang, and Zhongshan Li
Appl. Opt. 48(4) B105-B110 (2009)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.