Abstract

An “all optical” methodology, including Raman and optical transmission spectroscopy, is presented to study the thermal degradation in edible oils. Oils rich in monounsaturated (MU), polyunsaturated (PU), and saturated (S) fatty acids (FA) were heated above and below their smoke point (∼230°C). While the intensity (I) of the identified saturated (C–C, 1440 cm−1) FA Raman marker did not change appreciably, the identified unsaturated (C=C, 1265 cm−1) FA marker decreased in these oils when heated above the smoke point. A Raman parameter, I1265/I1440, designating thermal degradation, is proposed that was found to decrease consistently for the PUFA-rich and MUFA-rich oils when heated above the smoke point, while the SFA-rich oil did not degrade at all over the whole temperature range. An optical transmission marker at 2140 nm was identified that decreased consistently with increased thermal stressing. These markers can be calibrated with the variations in the quantitative iodine value, an industrial benchmark for the degree of unsaturation, for thermally stressed oils.

© 2019 The Author(s)

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Supplementary Material (1)

NameDescription
» Supplement 1       Supplemental material for Calibrated Optical Markers to Study Thermal Degradation in Edible Oils Using Raman and Optical Transmission Spectroscopy

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription