Abstract

The application of attenuated total reflection surface-enhanced infrared absorption spectroscopy (ATR SEIRA) to the analysis of fatty acids on silver nanoparticles was investigated. Attenuated total reflection measurements using four types of internal reflection elements (IREs)—zinc selenide, diamond, silicon, and germanium—were performed for silver nanoparticles modified with fatty acids, and germanium IRE was shown to be suitable for the analysis of silver nanoparticles, even when the sample had a high refractive index. Fatty acids coating the silver nanoparticles could be directly identified by SEIRA enhancement, because both symmetric carboxylate stretching vibration and methylene wagging vibration were strongly detected. Furthermore, the peak positions for methylene wagging vibration differed depending on the carbon number of the fatty acid, so that information from the ATR SEIRA spectra makes it possible to identify substances coating silver nanoparticles. Therefore, ATR SEIRA would appear to have significant potential as a technique for the identification of substances coated on metal nanoparticle surfaces.

© 2017 The Author(s)

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription