Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 71,
  • Issue 8,
  • pp. 1856-1867
  • (2017)

Investigation of the Sensitivity of Transmission Raman Spectroscopy for Polymorph Detection in Pharmaceutical Tablets

Not Accessible

Your library or personal account may give you access

Abstract

Polymorph detection is critical for ensuring pharmaceutical product quality in drug substances exhibiting polymorphism. Conventional analytical techniques such as X-ray powder diffraction and solid-state nuclear magnetic resonance are utilized primarily for characterizing the presence and identity of specific polymorphs in a sample. These techniques have encountered challenges in analyzing the constitution of polymorphs in the presence of other components commonly found in pharmaceutical dosage forms. Laborious sample preparation procedures are usually required to achieve satisfactory data interpretability. There is a need for alternative techniques capable of probing pharmaceutical dosage forms rapidly and nondestructively, which is dictated by the practical requirements of applications such as quality monitoring on production lines or when quantifying product shelf lifetime. The sensitivity of transmission Raman spectroscopy for detecting polymorphs in final tablet cores was investigated in this work. Carbamazepine was chosen as a model drug, polymorph form III is the commercial form, whereas form I is an undesired polymorph that requires effective detection. The concentration of form I in a direct compression tablet formulation containing 20% w/w of carbamazepine, 74.00% w/w of fillers (mannitol and microcrystalline cellulose), and 6% w/w of croscarmellose sodium, silicon dioxide, and magnesium stearate was estimated using transmission Raman spectroscopy. Quantitative models were generated and optimized using multivariate regression and data preprocessing. Prediction uncertainty was estimated for each validation sample by accounting for all the main variables contributing to the prediction. Multivariate detection limits were calculated based on statistical hypothesis testing. The transmission Raman spectroscopic model had an absolute prediction error of 0.241% w/w for the independent validation set. The method detection limit was estimated at 1.31% w/w. The results demonstrated that transmission Raman spectroscopy is a sensitive tool for polymorphs detection in pharmaceutical tablets.

© 2017 The Author(s)

PDF Article
More Like This
Authentication of gold nanoparticle encoded pharmaceutical tablets using polarimetric signatures

Artur Carnicer, Oriol Arteaga, Josep M. Suñé-Negre, and Bahram Javidi
Opt. Lett. 41(19) 4507-4510 (2016)

Density-dependent determination of scattering properties of pharmaceutical tablets using coherent backscattering spectroscopy

Annika Häffner, Philipp Krauter, and Alwin Kienle
Opt. Express 26(16) 19964-19971 (2018)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.