Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 71,
  • Issue 4,
  • pp. 735-743
  • (2017)

Analysis of Indium Tin Oxide Film Using Argon Fluroide (ArF) Laser-Excited Atomic Fluorescence of Ablated Plumes

Not Accessible

Your library or personal account may give you access

Abstract

A two-pulse laser-excited atomic fluorescence (LEAF) technique at 193 nm wavelength was applied to the analysis of indium tin oxide (ITO) layer on polyethylene terephthalate (PET) film. Fluorescence emissions from analytes were induced from plumes generated by first laser pulse. Using this approach, non-selective LEAF can be accomplished for simultaneous multi-element analysis and it overcomes the handicap of strict requirement for laser excitation wavelength. In this study, experimental conditions including laser fluences, times for gating and time delay between pulses were optimized to reveal high sensitivity with minimal sample destruction and penetration. With weak laser fluences of 100 and 125 mJ/cm2 for 355 and 193 nm pulses, detection limits were estimated to be 0.10% and 0.43% for Sn and In, respectively. In addition, the relation between fluorescence emissions and number of laser shots was investigated; reproducible results were obtained for Sn and In. It shows the feasibility of depth profiling by this technique. Morphologies of samples were characterized at various laser fluences and number of shots to examine the accurate penetration. Images of craters were also investigated using scanning electron microscopy (SEM). The results demonstrate the imperceptible destructiveness of film after laser shot. With such weak laser fluences and minimal destructiveness, this LEAF technique is suitable for thin-film analysis.

© 2017 The Author(s)

PDF Article
More Like This
Time-resolved ultrafast laser ablation dynamics of thin film indium tin oxide

Goran Erik Hallum, Dorian Kürschner, David Redka, Dorothée Niethammer, Wolfgang Schulz, and Heinz Paul Huber
Opt. Express 29(19) 30062-30076 (2021)

Direct-write patterning of indium-tin-oxide film by high pulse repetition frequency femtosecond laser ablation

H. W. Choi, D. F. Farson, J. Bovatsek, A. Arai, and D. Ashkenasi
Appl. Opt. 46(23) 5792-5799 (2007)

Hierarchical laser patterning of indium tin oxide thin films

Nicholas Charipar, Raymond C. Y. Auyeung, Heungsoo Kim, Kristin Charipar, and Alberto Piqué
Opt. Mater. Express 9(7) 3035-3045 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.