Abstract

Laser-induced breakdown spectroscopy (LIBS) holds potential advantages in special nuclear material (SNM) sensing and nuclear forensics, which require rapid analysis, minimal sample preparation, and stand-off distance capability. SNM, such as U, however, result in crowded emission spectra with LIBS, and characteristic emission lines are challenging to discern. It is well-known that double-pulse LIBS (DPLIBS) improves the signal intensity for analytes over conventional single-pulse LIBS (SPLIBS). This study investigates the U signal in a glass matrix using DPLIBS and compares it to signal obtained using SPLIBS. Double-pulse LIBS involves sequential firing of a 1.06 µm Nd:YAG pre-pulse and 10.6 µm TEA CO2 heating pulse in a near collinear geometry. Optimization of experimental parameters including inter-pulse delay and energy follows identification of characteristic lines for the bulk analyte Ca and the minor constituent analyte U for both DPLIBS and SPLIBS. Spatial and temporal coupling of the two pulses in the proposed DPLIBS technique yields improvements in analytical merits with a negligible increase in damage to the sample compared to SPLIBS. Subsequently, the study discusses optimum plasma emission conditions of U lines and relative figures of merit in both SPLIBS and DPLIBS. Investigation into plasma characteristics also addresses plausible mechanisms related to the observed U analyte signal variation between SPLIBS and DPLIBS.

© 2016 The Author(s)

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription