Abstract

Structural changes and chemical modifications in DNA during interactions with X-ray radiation are still not clear within 48 h of incubation. We investigate genomic DNA from the radiated CNE2 cell line within 48 h of incubation using surface-enhanced Raman spectroscopy (SERS). Multivariate methods including principal component analysis (PCA) and random forest are proposed to explore the statistical significance before and after radiation. Our results show that intensities of several bands change after radiation, which indicates backbone damage and base-unstacking. Biological effects from DNA damage repairing process may be simultaneously stimulated and different from incubation time. Under doses of 10 Gy (with 24 and 48 h of incubation) and 20 Gy (with 48 h of incubation), the relative contents of C against T and A against G deviate obviously from the control level. Statistical results strengthen significantly the idea that modification in DNA bases is associated with the disruption of base-stacking in the DNA duplex. Our findings provide vital information for radiation-induced the DNA damage at the molecular level, which may provide insight into the effect and mechanism of anticarcinogens in tumor therapy.

© 2016 The Author(s)

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription