Quantitative macro-Raman spectroscopy was applied to the analysis of the bulk composition of pharmaceutical drug powders. Powders were extracted from seven commercial lactose-carrier-based dry-powder inhalers: Flixotide 50, 100, 250, and 500 μg/dose (four concentrations of fluticasone propionate) and Seretide 100, 250, and 500 μg/dose (three concentrations of fluticasone propionate, each with 50 μg/dose salmeterol xinafoate ). Also, a carrier-free pressurized metered-dose inhaler of the same combination product, Seretide 50 (50 μg fluticasone propionate and 25 μg salmeterol xinafoate per dose) was tested. The applicability of a custom-designed dispersive macro-Raman instrument with a large sample volume of 0.16 μL was tested to determine the composition of the multicomponent powder samples. To quantify the error caused by sample heterogeneity, a Monte Carlo model was developed to predict the minimum sample volume required for representative sampling of potentially heterogeneous samples at the microscopic level, characterized by different particle-size distributions and compositions. Typical carrier-free respirable powder samples required a minimum sample volume on the order of 10−4 μL to achieve representative sampling with less than 3% relative error. In contrast, dosage forms containing non-respirable carriers (e.g., lactose) required a sample volume on the order of 0.1 μL for representative measurements. Error analysis of the experimental results showed good agreement with the error predicted by the simulation.

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
Login to access OSA Member Subscription