In this work we describe a one-step approach for incorporating a red fluorophore (2SBPO) into core-shell nanoparticles for metal-enhanced fluorescence immunolabels. The 2SBPO-MEF nanoparticles are particularly attractive as cell labels because their ∼ 670 nm emission has minimal overlap with cell autofluorescence and from overlap with many conventional probes. 2SBPO was incorporated through physical entrapment during the Stöber process. Antibody-based cell labels were then synthesized using covalent linkage. The nanoparticle fluorescence was 7.5-fold higher than control nanoparticles lacking a metal core. We demonstrated labeling of CD4 + HuT 78 T lymphocytes using anti-CD4-conjugated nanoparticle labels. Cells labeled with anti-CD4 nanoparticles showed a 35-fold fluorescence signal compared to anti-CD4 coreless controls. This simple synthesis protocol can be applied to a variety of hydrophilic fluorophore types and has broad potential in bioanalytical and biosensing applications.

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
Login to access OSA Member Subscription