Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 69,
  • Issue 12,
  • pp. 1381-1389
  • (2015)

Variable Temperature Infrared Spectroscopy Investigations of Benzoic Acid Desorption from Sodium and Calcium Montmorillonite Clays

Not Accessible

Your library or personal account may give you access

Abstract

Processes involved in thermal desorption of benzoic acid from sodium and calcium montmorillonite clays are investigated by using variable temperature diffuse reflection Fourier transform infrared spectroscopy (DRIFTS). By monitoring the temperature dependence of infrared absorbance bands while heating samples, subtle changes in molecular vibrations are detected and employed to characterize specific benzoic acid adsorption sites. Abrupt changes in benzoic acid adsorption site properties occur for both clay samples at about 125 °C. Difference spectra absorbance band frequency variations indicate that adsorbed benzoic acid interacts with interlayer cations through water bridges and that these interactions can be disrupted by the presence of organic anions, in particular, benzoate.

PDF Article
More Like This
Theory of laser-stimulated desorption spectroscopy

S. H. Lin, A. Boeglin, and B. Fain
J. Opt. Soc. Am. B 4(2) 211-218 (1987)

Photorefractive effect in nematic—clay nanocomposites

Yuan-Pin Huang, Tsung-Yen Tsai, Wei Lee, Wei-Kuo Chin, Yun-Min Chang, and Hui-Yu Chen
Opt. Express 13(6) 2058-2063 (2005)

Pulsed-laser-induced desorption from metal surfaces

Peter C. Stair and Eric Weitz
J. Opt. Soc. Am. B 4(2) 255-260 (1987)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.