The amount of Rhizoctonia solani in the soil and how much must be present to cause disease in sugar beet (Beta vulgaris L.) is relatively unknown. This is mostly because of the usually low inoculum densities found naturally in soil and the low sensitivity of traditional serial dilution assays. We investigated the usefulness of Fourier transform mid-infrared (MIR) and near-infrared (NIR) spectroscopic properties in identifying the artificial colonization of barley grains with R. solani AG 2-2 IIIB and in detecting R. solani populations in plant tissues and inoculants. The objectives of this study were to compare the ability of traditional plating assays to NIR and MIR spectroscopies to identify R. solani in different-size fractions of colonized ground barley (used as an artificial inoculum) and to differentiate colonized from non-inoculated barley. We found that NIR and MIR spectroscopies were sensitive in resolving different barley particle sizes, with particles that were <0.25 and 0.25-0.5 mm having different spectral properties than coarser particles. Moreover, we found that barley colonized with R. solani had different MIR spectral properties than the non-inoculated samples for the larger fractions (0.5-1.0, 1.0-2.0, and >2.0 mm) of the ground barley. This colonization was confirmed using traditional plating assays. Comparisons with the spectra from pure fungal cultures and non-inoculated barley suggest that the MIR spectrum of colonized barley is different because of the consumption of C substrates by the fungus rather than because of the presence of fungal bands in the spectra of the colonized samples. We found that MIR was better than NIR spectroscopy in differentiating the colonized from the control samples.

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
Login to access OSA Member Subscription