Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 68,
  • Issue 9,
  • pp. 925-936
  • (2014)

Planetary Geochemical Investigations Using Raman and Laser-Induced Breakdown Spectroscopy

Not Accessible

Your library or personal account may give you access

Abstract

An integrated Raman spectroscopy and laser-induced breakdown spectroscopy (LIBS) instrument is a valuable geoanalytical tool for future planetary missions to Mars, Venus, and elsewhere. The ChemCam instrument operating on the Mars Curiosity rover includes a remote LIBS instrument. An integrated Raman-LIBS spectrometer (RLS) based on the ChemCam architecture could be used as a reconnaissance tool for other contact instruments as well as a primary science instrument capable of quantitative mineralogical and geochemical analyses. Replacing one of the ChemCam spectrometers with a miniature transmission spectrometer enables a Raman spectroscopy mineralogical analysis to be performed, complementing the LIBS chemical analysis while retaining an overall architecture resembling ChemCam. A prototype transmission spectrometer was used to record Raman spectra under both Martian and Venus conditions. Two different high-pressure and high-temperature cells were used to collect the Raman and LIBS spectra to simulate surface conditions on Venus. The resulting LIBS spectra were used to generate a limited partial least squares Venus calibration model for the major elements. These experiments demonstrate the utility and feasibility of a combined RLS instrument.

PDF Article
More Like This
Calibrating the ChemCam laser-induced breakdown spectroscopy instrument for carbonate minerals on Mars

Nina L. Lanza, Roger C. Wiens, Samuel M. Clegg, Ann M. Ollila, Seth D. Humphries, Horton E. Newsom, and James E. Barefield
Appl. Opt. 49(13) C211-C217 (2010)

Examining natural rock varnish and weathering rinds with laser-induced breakdown spectroscopy for application to ChemCam on Mars

Nina L. Lanza, Samuel M. Clegg, Roger C. Wiens, Rhonda E. McInroy, Horton E. Newsom, and Matthew D. Deans
Appl. Opt. 51(7) B74-B82 (2012)

Time-resolved Raman spectroscopy for in situ planetary mineralogy

Jordana Blacksberg, George R. Rossman, and Anthony Gleckler
Appl. Opt. 49(26) 4951-4962 (2010)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.