Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 68,
  • Issue 8,
  • pp. 900-908
  • (2014)

Temperature Profile Retrieval in Axisymmetric Combustion Plumes Using Multilayer Perceptron Modeling and Spectral Feature Selection in the Infrared CO2 Emission Band

Not Accessible

Your library or personal account may give you access

Abstract

In this work, a methodology based on the combined use of a multilayer perceptron model fed using selected spectral information is presented to invert the radiative transfer equation (RTE) and to recover the spatial temperature profile inside an axisymmetric flame. The spectral information is provided by the measurement of the infrared CO<sub>2</sub> emission band in the 3-5 μm spectral region. A guided spectral feature selection was carried out using a joint criterion of principal component analysis and a priori physical knowledge of the radiative problem. After applying this guided feature selection, a subset of 17 wavenumbers was selected. The proposed methodology was applied over synthetic scenarios. Also, an experimental validation was carried out by measuring the spectral emission of the exhaust hot gas plume in a microjet engine with a Fourier transform-based spectroradiometer. Temperatures retrieved using the proposed methodology were compared with classical thermocouple measurements, showing a good agreement between them. Results obtained using the proposed methodology are very promising and can encourage the use of sensor systems based on the spectral measurement of the CO<sub>2</sub> emission band in the 3-5 μm spectral window to monitor combustion processes in a nonintrusive way.

PDF Article
More Like This
Single-ended mid-infrared laser-absorption sensor for simultaneous in situ measurements of H2O, CO2, CO, and temperature in combustion flows

Wen Yu Peng, Christopher S. Goldenstein, R. Mitchell Spearrin, Jay B. Jeffries, and Ronald K. Hanson
Appl. Opt. 55(33) 9347-9359 (2016)

Retrieval of pigment concentrations and size structure of algal populations from their absorption spectra using multilayered perceptrons

Annick Bricaud, Carlos Mejia, David Blondeau-Patissier, Hervé Claustre, Michel Crepon, and Sylvie Thiria
Appl. Opt. 46(8) 1251-1260 (2007)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.