Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 68,
  • Issue 3,
  • pp. 383-387
  • (2014)

Variation in the Transmission Near-Infrared Signal with Depth in Turbid Media

Open Access Open Access

Abstract

Transmission near-infrared (NIR) measurements of a 1 mm thick aspirin disk were made at different positions as it was moved through a stack of eight 0.5 mm thick disks of microcrystalline cellulose (Avicel). The magnitude of the first derivative of absorbance for the aspirin interlayer at 8934 cm<sup>−1</sup> was lower when the disk was placed at the top or bottom of the stack of Avicel disks, with the largest signal observed when the aspirin was positioned at the central positions. The variation in signal with depth is consistent with that observed previously for transmission Raman spectrometry. In both cases, the trend observed can be attributed to lower photon density at the air-sample interface, relative to the center of the sample, owing to loss of photons to the air. This results in a reduction in the number of photons absorbed or Raman photons generated and subsequently detected when the interlayer occupies a near-surface position.

PDF Article
More Like This
Interferometric Near-Infrared Spectroscopy (iNIRS) for determination of optical and dynamical properties of turbid media

Dawid Borycki, Oybek Kholiqov, Shau Poh Chong, and Vivek J. Srinivasan
Opt. Express 24(1) 329-354 (2016)

Refractive index measurement of turbid media by transmission of backscattered light near the critical angle

H. Contreras-Tello and A. García-Valenzuela
Appl. Opt. 53(21) 4768-4778 (2014)

Interferometric near-infrared spectroscopy directly quantifies optical field dynamics in turbid media

Dawid Borycki, Oybek Kholiqov, and Vivek J. Srinivasan
Optica 3(12) 1471-1476 (2016)

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.


Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved