Perchlorate (ClO<sub>4</sub><sup>−</sup>) has emerged as a widespread environmental contaminant found in groundwater and surface water and there is a great need for rapid detection and monitoring of this contaminant. Surface-enhanced Raman scattering (SERS) spectroscopy was found to be capable of detecting ClO<sub>4</sub><sup>−</sup> at concentrations as low as 25 μg/L using poly(diallyldimethylammonium chloride)-modified gold nanoparticles (PDDA-AuNPs) as a substrate. The substrate was successfully fabricated by combining the self-assembly technique with a heat-treatment-based strategy using poly(diallyldimethylammonium chloride) (PDDA) as the reducing and stabilizing agents. With the 520 cm<sup>−1</sup> band of silicon as external standard, band intensity ratios of perchlorate to silicon, (i.e., <i>I</i><sub>931</sub>/<i>I</i><sub>520</sub>) were found to have a quantitative relationship with a large concentration range of perchlorate between 25 μg/L and 50 mg/L. The methodology was also reproducible and not susceptible to the interference of other anions such as sulfate, carbonate, nitrate, and chloride at concentrations of 1 mM, making it potentially suitable for rapid screening and routine analysis of perchlorate in environmental samples.

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
Login to access OSA Member Subscription