Abstract

A deep-ultraviolet (UV) Raman spectrometer with excitation source tunable from 193 to 210 nm has been built and characterized. The dispersion of the spectrometer over the entire range was measured and described theoretically. The relative sensitivity of the spectrometer was estimated using the integrated intensity ratio of two Raman bands of cyclohexane. Resonance Raman spectra of three formulated insulin products were measured and compared. A band-targeted entropy minimization algorithm was applied to the collected spectra for mixture analysis of insulin products. We conclude that it is feasible to develop robust qualitative methods for quality control of protein-based formulated drug using DUVRR spectroscopy.

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription