Attenuated total reflection (ATR) infrared and Fourier transform (FT) Raman spectra were obtained from wool threads dyed in the laboratory with natural dyes used in antiquity, following a procedure similar to ancient methods for dyeing wool. The ATR spectra were primarily dominated by the signals of the wool, making it difficult to identify the dye on the fibers only by visual inspection of the infrared spectrum. However, the Raman spectra showed more significant characteristics attributable to the dyes as previously studied in the literature on modern synthetic dyes. A library-search method was thus applied to the second derivatives of both the ATR and Raman spectra to verify the possibility of identifying the dye. Two libraries were constructed, one consisting of the ATR spectra of undyed wool (raw, washed, and mordanted) and the transmission spectra of pure dyes and the other consisting of the Raman spectra of undyed wool and of pure dyes. Correlation and first-derivative correlation search algorithms were used. The results presented here suggest that the two types of spectroscopy are complementary in this kind of work, allowing the almost complete identification of historic dyes on wool. In fact, through the combined use of the two searches, most dyes were identified with a good index of similarity and within the first five hits. Only for annatto was identification totally impossible using either technique. Subsequently the same method was applied to wool, silk, and cotton threads taken from ancient Caucasian and Chinese textiles.

PDF Article

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.