Real-time Raman spectroscopy was successfully utilized to monitor solvent evaporation and molecular orientation during electrospinning of atactic polystyrene (a-PS). The use of a binary solvent system of N,N-dimethyl formamide (DMF) and tetrahydrofuran (THF) provided a stable, straight jet during the experiment. The prominent Raman bands centered at 866 cm<sup>–1</sup>, 914 cm<sup>–1</sup>, and 1004 cm<sup>–1</sup>, unique to DMF, THF, and a-PS, respectively, were used to monitor solvent concentration changes along the electrospinning jet for two different a-PS solutions. In addition, the changes in relative intensity for the radial skeletal ring vibration of the aromatic group of a-PS at 623 cm<sup>–1</sup> in two different polarization geometries, ZZ and YY, were monitored for orientation information. This study reports the first quantitative vibrational spectroscopic measurement during the electrospinning process. A significant change in concentration and orientation was observed during the process. The changes are explained in relation to the electrospinning process.

PDF Article

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.