Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 64,
  • Issue 7,
  • pp. 760-766
  • (2010)

Laser-Based Detection of TNT and RDX Residues in Real Time Under Ambient Conditions

Not Accessible

Your library or personal account may give you access

Abstract

We detect thin films of 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-hexanitro-1,3,5-triazine (RDX) by one- and two-laser photofragmentation-fragment detection spectroscopy in real time at ambient temperature and pressure. In the one-laser technique, a laser tuned to 226 nm excites the energetic material and both generates the characteristic NO photofragments and facilitates their detection by resonance-enhanced multiphoton ionization (REMPI) using their A–X (0,0) transitions near 226 nm. In contrast, in the two-laser technique, a 454 nm laser generates the analyte molecule in the gas phase by matrix-assisted desorption, and a second laser tuned to 226 nm both photofragments it and ionizes the resulting NO. We report the effects of laser energy, analyte concentration, and matrix concentration on the ion signal and determine the rotational temperatures of the NO photofragments from Boltzmann, rotational distribution analysis of the REMPI spectra. We achieve limits of detection (S/N = 3) of hundreds of ng/cm<sup>2</sup> for both techniques under ambient conditions with a positive signal identification as low as 70 pg using a single 226 nm laser pulse of ∼50 μJ.

PDF Article
More Like This
Laser photofragmentation–fragment detection and pyrolysis–laser-induced fluorescence studies on energetic materials

Vaidhianat Swayambunathan, Gurbax Singh, and Rosario C. Sausa
Appl. Opt. 38(30) 6447-6454 (1999)

Detection of condensed-phase explosives via laser-induced vaporization, photodissociation, and resonant excitation

C. M. Wynn, S. Palmacci, R. R. Kunz, K. Clow, and M. Rothschild
Appl. Opt. 47(31) 5767-5776 (2008)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.