Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 64,
  • Issue 6,
  • pp. 571-577
  • (2010)

Study of Inorganic Particles, Fibers, and Asbestos Bodies by Variable Pressure Scanning Electron Microscopy with Annexed Energy Dispersive Spectroscopy and Micro-Raman Spectroscopy in Thin Sections of Lung and Pleural Plaque

Not Accessible

Your library or personal account may give you access

Abstract

In a previous work it has been demonstrated that micro-Raman spectroscopy is a technique able to recognize crystalline phases on untreated samples. In that case, inorganic particles and uncoated fibers from bronchoalveolar lavage (BAL) of a patient affected by pneumoconiosis were identified and characterized. In this work the technique is applied to asbestos bodies, that is, to coated fibers, and on crystallizations and fibrous phases observed in the plural plaque from patients affected by mesothelioma. From the Raman analysis the abundant fibrous material observed in the pleural area is talc, whereas rounded grains in the pleural tissue show the Raman spectrum of apatite, a calcium phosphate mineral particular to bones. In the pulmonary tissue many asbestos bodies, consisting of the incorporated fibers coated by iron-rich proteins, were observed. Under the 632.8 nm laser beam of the spectrometer, photo-crystallization of hematite in the iron-rich material forming the asbestos bodies can be proposed by the changes in the Raman spectra acquired during subsequent acquisitions. Nevertheless, the identification of the mineral phase constituting the incorporated fiber was possible by analyzing the Raman spectra; the results were confirmed by variable pressure scanning electron microscopy with annexed energy dispersive spectroscopy (VP-SEM-EDS) analyses.

PDF Article
More Like This
Real-time detection of airborne asbestos by light scattering from magnetically re-aligned fibers

Christopher Stopford, Paul H. Kaye, Richard S. Greenaway, Edwin Hirst, Zbigniew Ulanowski, and Warren R. Stanley
Opt. Express 21(9) 11356-11367 (2013)

Biochemical characterization of human gingival crevicular fluid during orthodontic tooth movement using Raman spectroscopy

Gyeong Bok Jung, Kyung-A Kim, Ihn Han, Young-Guk Park, and Hun-Kuk Park
Biomed. Opt. Express 5(10) 3508-3520 (2014)

Raman spectroscopy combined with multivariate analysis to study the biochemical mechanism of lung cancer microwave ablation

Dongliang Song, Fan Yu, Shilin Chen, Yishen Chen, Qingli He, Zhe Zhang, Jingyuan Zhang, and Shuang Wang
Biomed. Opt. Express 11(2) 1061-1072 (2020)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved