Iron tetra-carboxyl phthalocyanine (TCFePc) was covalently immobilized to the surface of core-shell magnetite silica nanoparticles (NPs) as facilely separated supported catalyst, namely P-M SiO<sub>2</sub> NPs, for catalyzing the degradation of organic pollutants in aqueous solution under visible light irradiation. X-ray diffraction, transmission electron microscopy (TEM), scanning electron microscopy (SEM), superconducting quantum interference device (SQUID), and ultraviolet–visible (UV-Vis) spectroscopy were used to characterize the sample. The photocatalytic activity of P-M SiO<sub>2</sub> NPs was determined using rhodamine B (RhB) and methyl orange (MO) as the objective decomposition substances. The results revealed that the novel supported catalyst exhibited good catalytic activity over a wide pH range, and the degradation rate of RhB and MO is up to 90% during 120 min of reaction. Moreover, it is noteworthy that the catalyst can be easily separated using an external magnetic field and employed directly for the next round of reaction.

PDF Article

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.