Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 64,
  • Issue 2,
  • pp. 211-218
  • (2010)

Surface-Controlled Electroless Deposition Method in the Preparation of Stacked Silver Nanoparticles on Germanium for Surface-Enhanced Infrared Absorption Measurements

Not Accessible

Your library or personal account may give you access

Abstract

A new method to prepare highly sensitive sensing elements for surface-enhanced infrared absorption (SEIRA) measurements was investigated. A surface-controlled procedure was employed to grow round and stacked silver nanoparticles (Ag-NPs) on germanium substrates. In this method, an initial layer of Ag-NPs was prepared using a common method of electroless deposition. After subsequently placing a controlled layer of <i>p</i>-aminothiophenol (<i>p</i>ATP) on the surface of the initial layer of Ag-NPs, the substrates were placed in a silver nitrate solution to grow a second layer of Ag-NPs. By repeating these growing procedures, multi-layers of stacked Ag-NPs can be obtained. To examine the influence of morphology of the formed Ag-NPs on the resulting SEIRA signals, the factors affecting the reactions were systematically examined. These factors included the concentrations of silver nitrates, the reaction times to prepare both the initial layer and the second layer of Ag-NPs, and the coverage of <i>p</i>ATP. Results indicate that the Ag-NPs making up the second layer were round in shape and much more densely distributed than those in the initial layer. The observed SEIRA spectra did not show derivative-shaped absorption bands for <i>p</i>ATP on the Ag-NPs after re-growth, indicating that <i>p</i>ATP was sandwiched between the two layers of Ag-NPs, preventing the nanoparticles from coming into direct contact with one another. Also, the SEIRA signals of the controlled molecules between the particles were found to be two to five times more intense than the signals before growing another layer of Ag-NPs. The reaction conditions can be adjusted to vary the morphology and thickness of the Ag-NP layers, and, by repeating the growing procedures, a thick layer of stacked Ag-NPs with suitable size for SEIRA measurements can be obtained that is highly suited to chemical sensing applications.

PDF Article
More Like This
Light management on silicon utilizing localized surface plasmon resonance of electroless plated silver nanoparticles

Bingtao Gao, Wenqi Duan, Aaron D. Silva, Alexander C. Walhof, Weitao Dai, and Fatima Toor
Opt. Mater. Express 9(9) 3753-3764 (2019)

Surface-enhanced fluorescence from silver fractallike nanostructures decorated with silver nanoparticles

Jun Dong, Hairong Zheng, Xuqiang Li, Xiaoqing Yan, Yu sun, and Zhenglong Zhang
Appl. Opt. 50(31) G123-G126 (2011)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved