We report the development of a high-sensitivity time-resolved infrared and Raman spectrometer with exceptional experimental flexibility based on a 10-kHz synchronized dual-arm femtosecond and picosecond laser system. Ultrafast high-average-power titanium sapphire lasers and optical parametric amplifiers provide wavelength tuning from the ultraviolet (UV) to the mid-infrared region. Customized silicon, indium gallium arsenide, and mercury cadmium telluride linear array detectors are provided to monitor the probe laser intensity in the UV to mid-infrared wavelength range capable of measuring changes in sample absorbance of ΔOD ∼ 10<sup>–5</sup> in 1 second. The system performance is demonstrated for the time-resolved infrared, two-dimensional (2D) infrared, and femtosecond stimulated Raman spectroscopy techniques with organometallic intermediates, organic excited states, and the dynamics of the tertiary structure of DNA.

PDF Article

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.