The thickness of thin silica layers in the submicrometer range, i.e., between about 150 and 700 nm, was determined by near-infrared (NIR) reflection spectroscopy. Silica layers were prepared by spin-coating of perhydropolysilazane (PHPS) on silicon wafers or poly(ethylene terephthalate) (PET) foil and subsequent conversion of the PHPS into SiO<sub>x</sub> by vacuum ultraviolet (VUV) irradiation at 172 nm. Since the NIR spectra of the inorganic layers do not show overtone and combination bands, analysis is based on tiny differences in reflectance of samples provided with layers of different thicknesses. Quantitative investigations were carried out by use of chemometric approaches on the basis of the partial least squares (PLS) algorithm. Optimization of the chemometric models was achieved by systematic variation of the preprocessing of the spectra before application of the PLS regression. The root mean square error of prediction (RMSEP) and the coefficient of determination <i>R</i><sup>2</sup> were used for the evaluation of the various pretreatment strategies. Reference data for the calibration procedures were obtained by means of gravimetry. The maximum error for the determination of the thickness was estimated to be on the order of 20%. The method was used to monitor the homogeneity of the thickness of silica layers made by use of a pilot scale coating machine. Thickness profiles recorded by NIR spectroscopy showed clear differences between layers with uniform or non-uniform quality of the application. Moreover, a close correlation of the profiles with the average coating weights determined by gravimetry was found.

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
Login to access OSA Member Subscription