Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 62,
  • Issue 8,
  • pp. 860-865
  • (2008)

Near-Infrared Spectroscopic Monitoring of the Water Adsorption/Desorption Process in Modern and Archaeological Wood

Not Accessible

Your library or personal account may give you access

Abstract

We investigated the adsorption/desorption mechanism of water and the variation of water adsorption for modern and archaeological wood using near-infrared spectroscopy. A mixture model of water was used to decompose the near-infrared difference spectra into three components (free water molecules (S<sub>0</sub>), those with one OH group engaged in hydrogen bonding (S<sub>1</sub>), and those with two OH groups engaged in hydrogen bonding (S<sub>2</sub>)) based on a principal component analysis. The variations of each water component with relative humidity could be explained by proposing a model that describes water absorption in three stages. It was concluded that the aging phenomenon in wood is due to the decrease of adsorption sites on hemicellulose and amorphous cellulose.

PDF Article
More Like This
Effects of adsorption–desorption processes on the response time and accuracy of photoacoustic detection of ammonia

Andreas Schmohl, Andras Miklos, and Peter Hess
Appl. Opt. 40(15) 2571-2578 (2001)

Spectroscopic studies of wood-drying processes

Mats Andersson, Linda Persson, Mikael Sjöholm, and Sune Svanberg
Opt. Express 14(8) 3641-3653 (2006)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved