Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 62,
  • Issue 7,
  • pp. 739-746
  • (2008)

Fluorescence Detection and Identification of Tagging Agents and Impurities Found in Explosives

Not Accessible

Your library or personal account may give you access

Abstract

The detection and identification of 2,4,6-trinitrotoluene (TNT), 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX), and pentaerythritol tetranitrate (PETN) vapors have proven to be difficult and challenging due to the low vapor pressures of these high explosives. Detecting higher vapor pressure impurity compounds found in TNT and possible tagging agents mandated to be added to plastic explosives (RDX and PETN) would allow for easier vapor detection. The higher vapor pressure nitro compounds of interest are considered to be non-fluorescent; however, once reduced to their amino analogs, they have relatively high quantum yields. The standard reduction products, the reduction products obtained in solution, and the reduction products obtained in vapor phase were analyzed by conventional fluorescence, synchronous luminescence, and derivative spectroscopy. The nitro analogs of the isomers 1,3-diaminobenzene, 1,2-diaminobenzene, and 1,4-diaminobenzene are found as impurities in TNT. We provide for the first time the synchronous luminescence derivative spectra of these isomers; including their individual spectra and a spectrum of an isomeric mixture of the three. Using the standard reduction products associated with these isomers and other aromatic amines, our data suggest that the vapors of two signature impurities, 1,3-dinitrobenzene and 2,4-dinitrotoluene (2,4-DNT), minor impurity compounds, and two possible tagging agents, 2-nitrotoluene (2-NT) and 4-nitrotoluene (4-NT), can be detected and selectively identified using our fluorescence approach. To prove our methodology, we show that we were able to generate, collect, and reduce 2-NT, 4-NT, and 2,4-DNT vapors to their amino analogs. Using our fluorescence approach, these vapors could be detected and selectively identified both individually and in a mixture. Collectively, our data indicate that our method of detecting and identifying higher vapor pressure explosive-like compounds could potentially be used to detect and identify low vapor pressure explosives such as TNT, RDX, and PETN.

PDF Article
More Like This
Detection of condensed-phase explosives via laser-induced vaporization, photodissociation, and resonant excitation

C. M. Wynn, S. Palmacci, R. R. Kunz, K. Clow, and M. Rothschild
Appl. Opt. 47(31) 5767-5776 (2008)

Laser photofragmentation–fragment detection and pyrolysis–laser-induced fluorescence studies on energetic materials

Vaidhianat Swayambunathan, Gurbax Singh, and Rosario C. Sausa
Appl. Opt. 38(30) 6447-6454 (1999)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.