The heat capacities were obtained from 294 to 133 K for four glucose-glass systems. Two of the glasses were prepared from crystalline glucose. One of the glasses contained the heavy-atom salt NaI and the other glass did not contain NaI. The other two glasses were similar, but they were prepared from glucose melts. Correlations were developed between the solid-matrix phosphorescence (SMP) lifetimes and intensities of 2-amino-1-methyl-6-phenylimidazo[4,5-<i>b</i>]pyridine (PhIP) in the glucose glasses and the heat capacities of the glucose sugar glasses as the temperature was lowered. Several plots of reciprocal SMP lifetime versus reciprocal temperature and reciprocal SMP lifetime versus reciprocal heat capacity were compared. Also, the reciprocal SMP intensity versus reciprocal temperature plots were compared with the corresponding reciprocal SMP intensity versus reciprocal heat capacity plots. In addition, basic photo-physical equations were used to develop relationships among the lifetime data, the intensity data, and the heat capacity data. The heat capacity data and SMP lifetime data, obtained as the temperature was lowered, were discussed in relationship to low-frequency vibrational modes and βrelaxation phenomena in the glucose glasses. The discussion of these phenomena offered explanations for some of the loss of the excited triplet-state energy of PhIP in the glucose sugar glasses.

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
Login to access OSA Member Subscription