The identification and quantification of illicit substances in the field is often desirable. Fourier transform infrared spectroscopy (FT-IR) has both qualitative and quantitative capabilities and field portable instruments are commercially available. Transmission infrared spectra of mixtures containing ephedrine hydrochloride, glucose, and caffeine and attenuated total reflection (ATR) infrared spectra of mixtures composed of methylamphetamine hydrochloride, glucose, and caffeine were used to develop principal component regression (PCR) calibration models. The root mean sum of errors of predictions (RMSEP) of all individual components in a mixture from a single measurement was, <6% w/w, which reduced to ∼3% w/w when triplicates were averaged. Sample mixing and grinding are essential to minimize the effect of heterogeneity, as deviations of up to 20% w/w were observed for single measurements of unground samples. Poor predictions of the components in a mixture occurred when samples were "contaminated" with substances not present in the calibration set, as would be expected. When only a single analyte (drug) was targeted, using a calibration set that contained both contaminated and uncontaminated samples, an RMSEP of ∼4% w/w was achieved. The results demonstrate that ATR-FT-IR has the potential to quantify methylamphetamine samples, and possibly other licit or illicit substances, in at-seizure and on-site scenarios.

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
Login to access OSA Member Subscription