Abstract

Recently, absorption-sensitive surface plasmon resonance (SPR) techniques have attracted much attention. SPR near-infrared spectroscopy (SPR-NIRS) based on the Kretschmann configuration is one of the techniques for absorption enhancement. The enhanced spectrum obtained by SPR-NIRS basically corresponds to the measurement of an NIR absorption spectrum with a very short path length. However, the path length cannot be applied for Lambert's law due to the enhanced evanescent field. A direct determination of the penetration depth of the evanescent field is carried out via NIR absorptions enhanced by the off-resonance of surface plasmons, which is a principle of SPR-NIRS. The signal intensities of the enhanced NIR spectra of micrometer-thick polymer films having various thicknesses are compared with the classic theory of penetration depth. It is confirmed that the effective depth of the SPR-NIRS measurement can be expressed by the classic theory of penetration depth of the evanescent field proposed by Harrick.

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription