The spectrofluorimetric analysis of protein-based binding media, which are commonly found as painting materials, is based on the detection of emissions from amino acids, as well as fluorescent degradation products that develop with aging. Laser-induced fluorescence spectroscopy, fluorescence excitation emission spectroscopy, and time-resolved fluorescence spectroscopy have all been employed in efforts to discriminate between commonly found proteinaceous binding media, including egg white, egg yolk, milk, and casein, as well as collagen-based glues from rabbit skin, ox bone, parchment, and fish. However, synchronous fluorescence spectroscopy (SFS), a rapid means of recording fluorescence properties of samples, has not been reported for the differentiation between binding media. This work focuses on the analysis of a large set of naturally aged films of different protein-based binding media using SFS with a range of different offsets between excitation and emission monochromators between 30–60 nm. An interpretation of synchronous fluorescence spectra of binding media is presented and is followed by an assessment and classification of a database of recorded spectra using multivariate analysis. Importantly, following SFS analysis of films of binding media, principal component analysis is used to differentiate among all the proteinaceous media considered on the basis of clustering of data. This application is thus a novel and nondestructive means for differentiation between protein-based binding media.

PDF Article

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.