Abstract

Vibrational sum-frequency spectroscopy is a powerful tool for the study of interfaces, but its application has hitherto mainly been limited to static structure. This contribution demonstrates how the considerably improved stability of state-of-the-art lasers and parametric generators can be exploited to study the evolution of interfacial structure continuously for several hours. By sequential wavelength tuning and automated control of spatial beam overlap at the target, amplitude changes of sum-frequency resonances in widely spaced infrared regions can be probed. This offers great advantages for the study of the synchronism of molecular processes at interfaces.

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription